Visible to the public Biblio

Filters: Author is Nikiforakis, N.  [Clear All Filters]
Book
Merzdovnik, G., Huber, M., Buhov, D., Nikiforakis, N., Neuner, S., Schmiedecker, M., Weippl, E..  2017.  Block Me If You Can: A Large-Scale Study of Tracker-Blocking Tools - IEEE Conference Publication.

In this paper, we quantify the effectiveness of third-party tracker blockers on a large scale. First, we analyze the architecture of various state-of-the-art blocking solutions and discuss the advantages and disadvantages of each method. Second, we perform a two-part measurement study on the effectiveness of popular tracker-blocking tools. Our analysis quantifies the protection offered against trackers present on more than 100,000 popular websites and 10,000 popular Android applications. We provide novel insights into the ongoing arms race between trackers and developers of blocking tools as well as which tools achieve the best results under what circumstances. Among others, we discover that rule-based browser extensions outperform learning-based ones, trackers with smaller footprints are more successful at avoiding being blocked, and CDNs pose a major threat towards the future of tracker-blocking tools. Overall, the contributions of this paper advance the field of web privacy by providing not only the largest study to date on the effectiveness of tracker-blocking tools, but also by highlighting the most pressing challenges and privacy issues of third-party tracking.
 

Conference Paper
Kondracki, B., Aliyeva, A., Egele, M., Polakis, J., Nikiforakis, N..  2020.  Meddling Middlemen: Empirical Analysis of the Risks of Data-Saving Mobile Browsers. 2020 IEEE Symposium on Security and Privacy (SP). :810—824.
Mobile browsers have become one of the main mediators of our online activities. However, as web pages continue to increase in size and streaming media on-the-go has become commonplace, mobile data plan constraints remain a significant concern for users. As a result, data-saving features can be a differentiating factor when selecting a mobile browser. In this paper, we present a comprehensive exploration of the security and privacy threat that data-saving functionality presents to users. We conduct the first analysis of Android's data-saving browser (DSB) ecosystem across multiple dimensions, including the characteristics of the various browsers' infrastructure, their application and protocol-level behavior, and their effect on users' browsing experience. Our research unequivocally demonstrates that enabling data-saving functionality in major browsers results in significant degradation of the user's security posture by introducing severe vulnerabilities that are not otherwise present in the browser during normal operation. In summary, our experiments show that enabling data savings exposes users to (i) proxy servers running outdated software, (ii) man-in-the-middle attacks due to problematic validation of TLS certificates, (iii) weakened TLS cipher suite selection, (iv) lack of support of security headers like HSTS, and (v) a higher likelihood of being labelled as bots. While the discovered issues can be addressed, we argue that data-saving functionality presents inherent risks in an increasingly-encrypted Web, and users should be alerted of the critical savings-vs-security trade-off that they implicitly accept every time they enable such functionality.
Miramirkhani, N., Appini, M. P., Nikiforakis, N., Polychronakis, M..  2017.  Spotless Sandboxes: Evading Malware Analysis Systems Using Wear-and-Tear Artifacts. 2017 IEEE Symposium on Security and Privacy (SP). :1009–1024.

Malware sandboxes, widely used by antivirus companies, mobile application marketplaces, threat detection appliances, and security researchers, face the challenge of environment-aware malware that alters its behavior once it detects that it is being executed on an analysis environment. Recent efforts attempt to deal with this problem mostly by ensuring that well-known properties of analysis environments are replaced with realistic values, and that any instrumentation artifacts remain hidden. For sandboxes implemented using virtual machines, this can be achieved by scrubbing vendor-specific drivers, processes, BIOS versions, and other VM-revealing indicators, while more sophisticated sandboxes move away from emulation-based and virtualization-based systems towards bare-metal hosts. We observe that as the fidelity and transparency of dynamic malware analysis systems improves, malware authors can resort to other system characteristics that are indicative of artificial environments. We present a novel class of sandbox evasion techniques that exploit the "wear and tear" that inevitably occurs on real systems as a result of normal use. By moving beyond how realistic a system looks like, to how realistic its past use looks like, malware can effectively evade even sandboxes that do not expose any instrumentation indicators, including bare-metal systems. We investigate the feasibility of this evasion strategy by conducting a large-scale study of wear-and-tear artifacts collected from real user devices and publicly available malware analysis services. The results of our evaluation are alarming: using simple decision trees derived from the analyzed data, malware can determine that a system is an artificial environment and not a real user device with an accuracy of 92.86%. As a step towards defending against wear-and-tear malware evasion, we develop statistical models that capture a system's age and degree of use, which can be used to aid sandbox operators in creating system i- ages that exhibit a realistic wear-and-tear state.