Visible to the public Biblio

Filters: Author is Auerbach, E.  [Clear All Filters]
2017
Auerbach, E., Leder, N., Gider, S., Suess, D., Arthaber, H..  2017.  Characterization of dynamic nonlinear effects in MTJ-based magnetic sensors. 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC). :1–3.

The MgO-based magnetic tunnel junction (MTJ) is the basis of modern hard disk drives' magnetic read sensors. Within its operating bandwidth, the sensor's performance is significantly affected by nonlinear and oscillating behavior arising from the MTJ's magnetization dynamics at microwave frequencies. Static I-V curve measurements are commonly used to characterize sensor's nonlinear effects. Unfortunately, these do not sufficiently capture the MTJ's magnetization dynamics. In this paper, we demonstrate the use of the two-tone measurement technique for full treatment of the sensor's nonlinear effects in conjunction with dynamic ones. This approach is new in the field of magnetism and magnetic materials, and it has its challenges due to the nature of the device. Nevertheless, the experimental results demonstrate how the two-tone measurement technique can be used to characterize magnetic sensor nonlinear properties.