Visible to the public Biblio

Filters: Author is Li, J.  [Clear All Filters]
Chen, W., Liang, X., Li, J., Qin, H., Mu, Y., Wang, J..  2018.  Blockchain Based Provenance Sharing of Scientific Workflows. 2018 IEEE International Conference on Big Data (Big Data). :3814–3820.
In a research community, the provenance sharing of scientific workflows can enhance distributed research cooperation, experiment reproducibility verification and experiment repeatedly doing. Considering that scientists in such a community are often in a loose relation and distributed geographically, traditional centralized provenance sharing architectures have shown their disadvantages in poor trustworthiness, reliabilities and efficiency. Additionally, they are also difficult to protect the rights and interests of data providers. All these have been largely hindering the willings of distributed scientists to share their workflow provenance. Considering the big advantages of blockchain in decentralization, trustworthiness and high reliability, an approach to sharing scientific workflow provenance based on blockchain in a research community is proposed. To make the approach more practical, provenance is handled on-chain and original data is delivered off-chain. A kind of block structure to support efficient provenance storing and retrieving is designed, and an algorithm for scientists to search workflow segments from provenance as well as an algorithm for experiments backtracking are provided to enhance the experiment result sharing, save computing resource and time cost by avoiding repeated experiments as far as possible. Analyses show that the approach is efficient and effective.
Zhao, W., Qiang, L., Zou, H., Zhang, A., Li, J..  2018.  Privacy-Preserving and Unforgeable Searchable Encrypted Audit Logs for Cloud Storage. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :29–34.

Audit logs are widely used in information systems nowadays. In cloud computing and cloud storage environment, audit logs are required to be encrypted and outsourced on remote servers to protect the confidentiality of data and the privacy of users. The searchable encrypted audit logs support a search on the encrypted audit logs. In this paper, we propose a privacy-preserving and unforgeable searchable encrypted audit log scheme based on PEKS. Only the trusted data owner can generate encrypted audit logs containing access permissions for users. The semi-honest server verifies the audit logs in a searchable encryption way before granting the operation rights to users and storing the audit logs. The data owner can perform a fine-grained conjunctive query on the stored audit logs, and accept only the valid audit logs. The scheme is immune to the collusion tamper or fabrication conducted by server and user. Concrete implementations of the scheme is put forward in detail. The correct of the scheme is proved, and the security properties, such as privacy-preserving, searchability, verifiability and unforgeability are analyzed. Further evaluation of computation load shows that the design is of considerable efficiency.

Li, J., Hua, C..  2017.  RaptorQ code based concurrent transmissions in dual connectivity LTE network. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.

Dual Connectivity(DC) is one of the key technologies standardized in Release 12 of the 3GPP specifications for the Long Term Evolution (LTE) network. It attempts to increase the per-user throughput by allowing the user equipment (UE) to maintain connections with the MeNB (master eNB) and SeNB (secondary eNB) simultaneously, which are inter-connected via non-ideal backhaul. In this paper, we focus on one of the use cases of DC whereby the downlink U-plane data is split at the MeNB and transmitted to the UE via the associated MeNB and SeNB concurrently. In this case, out-of-order packet delivery problem may occur at the UE due to the delay over the non-ideal backhaul link, as well as the dynamics of channel conditions over the MeNB-UE and SeNB-UE links, which will introduce extra delay for re-ordering the packets. As a solution, we propose to adopt the RaptorQ FEC code to encode the source data at the MeNB, and then the encoded symbols are separately transmitted through the MeNB and SeNB. The out-of-order problem can be effectively eliminated since the UE can decode the original data as long as it receives enough encoded symbols from either the MeNB or SeNB. We present detailed protocol design for the RaptorQ code based concurrent transmission scheme, and simulation results are provided to illustrate the performance of the proposed scheme.

Wen, M., Zhang, X., Li, H., Li, J..  2017.  A Data Aggregation Scheme with Fine-Grained Access Control for the Smart Grid. 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). :1–5.

With the rapid development of smart grid, smart meters are deployed at energy consumers' premises to collect real-time usage data. Although such a communication model can help the control center of the energy producer to improve the efficiency and reliability of electricity delivery, it also leads to some security issues. For example, this real-time data involves the customers' privacy. Attackers may violate the privacy for house breaking, or they may tamper with the transmitted data for their own benefits. For this purpose, many data aggregation schemes are proposed for privacy preservation. However, rare of them cares about both the data aggregation and fine-grained access control to improve the data utility. In this paper, we proposes a data aggregation scheme based on attribute decision tree. Security analysis illustrates that our scheme can achieve the data integrity, data privacy preservation and fine- grained data access control. Experiment results show that our scheme are more efficient than existing schemes.

Liu, Z., Deng, X., Li, J..  2017.  A secure localization algorithm based on reputation against wormhole attack in UWSNS. 2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS). :695–700.

On account of large and inconsistent propagation delays during transmission in Underwater Wireless Sensor Networks (UWSNs), wormholes bring more destructive than many attacks to localization applications. As a localization algorithm, DV-hop is classic but without secure scheme. A secure localization algorithm for UWSNs- RDV-HOP is brought out, which is based on reputation values and the constraints of propagation distance in UWSNs. In RDV-HOP, the anchor nodes evaluate the reputation of paths to other anchor nodes and broadcast these reputation values to the network. Unknown nodes select credible anchors nodes with high reputation to locate. We analyze the influence of the location accuracy with some parameters in the simulation experiments. The results show that the proposed algorithm can reduce the location error under the wormhole attack.

Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.

Wang, M., Qu, Z., He, X., Li, T., Jin, X., Gao, Z., Zhou, Z., Jiang, F., Li, J..  2017.  Real time fault monitoring and diagnosis method for power grid monitoring and its application. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–6.
In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.
Whelihan, D., Vai, M., Evanich, N., Kwak, K. J., Li, J., Britton, M., Frantz, B., Hadcock, D., Lynch, M., Schafer, D. et al..  2017.  Designing agility and resilience into embedded systems. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :249–254.

Cyber-Physical Systems (CPS) such as Unmanned Aerial Systems (UAS) sense and actuate their environment in pursuit of a mission. The attack surface of these remotely located, sensing and communicating devices is both large, and exposed to adversarial actors, making mission assurance a challenging problem. While best-practice security policies should be followed, they are rarely enough to guarantee mission success as not all components in the system may be trusted and the properties of the environment (e.g., the RF environment) may be under the control of the attacker. CPS must thus be built with a high degree of resilience to mitigate threats that security cannot alleviate. In this paper, we describe the Agile and Resilient Embedded Systems (ARES) methodology and metric set. The ARES methodology pursues cyber security and resilience (CSR) as high level system properties to be developed in the context of the mission. An analytic process guides system developers in defining mission objectives, examining principal issues, applying CSR technologies, and understanding their interactions.

Guo, L., Chen, J., Li, J..  2016.  Chaos-Based color image encryption and compression scheme using DNA complementary rule and Chinese remainder theorem. 2016 13th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :208–212.

In this paper, we propose a new color image encryption and compression algorithm based on the DNA complementary rule and the Chinese remainder theorem, which combines the DNA complementary rule with quantum chaotic map. We use quantum chaotic map and DNA complementary rule to shuffle the color image and obtain the shuffled image, then Chinese remainder theorem from number theory is utilized to diffuse and compress the shuffled image simultaneously. The security analysis and experiment results show that the proposed encryption algorithm has large key space and good encryption result, it also can resist against common attacks.