Visible to the public Biblio

Filters: Author is Wang, Hui  [Clear All Filters]
2014
Liu, Hongbo, Wang, Hui, Chen, Yingying, Jia, Dayong.  2014.  Defending Against Frequency-Based Attacks on Distributed Data Storage in Wireless Networks. ACM Trans. Sen. Netw.. 10:49:1–49:37.

As wireless networks become more pervasive, the amount of the wireless data is rapidly increasing. One of the biggest challenges of wide adoption of distributed data storage is how to store these data securely. In this work, we study the frequency-based attack, a type of attack that is different from previously well-studied ones, that exploits additional adversary knowledge of domain values and/or their exact/approximate frequencies to crack the encrypted data. To cope with frequency-based attacks, the straightforward 1-to-1 substitution encryption functions are not sufficient. We propose a data encryption strategy based on 1-to-n substitution via dividing and emulating techniques to defend against the frequency-based attack, while enabling efficient query evaluation over encrypted data. We further develop two frameworks, incremental collection and clustered collection, which are used to defend against the global frequency-based attack when the knowledge of the global frequency in the network is not available. Built upon our basic encryption schemes, we derive two mechanisms, direct emulating and dual encryption, to handle updates on the data storage for energy-constrained sensor nodes and wireless devices. Our preliminary experiments with sensor nodes and extensive simulation results show that our data encryption strategy can achieve high security guarantee with low overhead.

2019
Wang, Hui, Yan, Qiurong, Li, Bing, Yuan, Chenglong, Wang, Yuhao.  2019.  Sampling Time Adaptive Single-Photon Compressive Imaging. IEEE Photonics Journal. 11:1–10.
We propose a time-adaptive sampling method and demonstrate a sampling-time-adaptive single-photon compressive imaging system. In order to achieve self-adapting adjustment of sampling time, the theory of threshold of light intensity estimation accuracy is deduced. According to this threshold, a sampling control module, based on field-programmable gate array, is developed. Finally, the advantage of the time-adaptive sampling method is proved experimentally. Imaging performance experiments show that the time-adaptive sampling method can automatically adjust the sampling time for the change of light intensity of image object to obtain an image with better quality and avoid speculative selection of sampling time.