Visible to the public Biblio

Filters: Author is Cao, Z.  [Clear All Filters]
2020
Zhang, R., Cao, Z., Wu, K..  2020.  Tracing and detection of ICS Anomalies Based on Causality Mutations. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :511—517.

The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.

2018
Xie, P., Feng, J., Cao, Z., Wang, J..  2018.  GeneWave: Fast Authentication and Key Agreement on Commodity Mobile Devices. IEEE/ACM Transactions on Networking. 26:1688–1700.

Device-to-device communication is widely used for mobile devices and Internet of Things. Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then, we derive the initial acoustic channel response for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easyto-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10× faster than the state-of-the-art approach.

2017
Xie, P., Feng, J., Cao, Z., Wang, J..  2017.  GeneWave: Fast authentication and key agreement on commodity mobile devices. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Device-to-device (D2D) communication is widely used for mobile devices and Internet of Things (IoT). Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then we derive the initial acoustic channel response (ACR) for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easy-to-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10x faster than the state-of-the-art approach.
2014
Cao, Z., Deng, H., Lu, L., Duan, X..  2014.  An information-theoretic security metric for future wireless communication systems. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS). :1–4.
Quantitative analysis of security properties in wireless communication systems is an important issue; it helps us get a comprehensive view of security and can be used to compare the security performance of different systems. This paper analyzes the security of future wireless communication system from an information-theoretic point of view and proposes an overall security metric. We demonstrate that the proposed metric is more reasonable than some existing metrics and it is highly sensitive to some basic parameters and helpful to do fine-grained tuning of security performance.