Visible to the public Biblio

Filters: Author is Jin, H.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Hu, P., Pathak, P. H., Shen, Y., Jin, H., Mohapatra, P..  2017.  PCASA: Proximity Based Continuous and Secure Authentication of Personal Devices. 2017 14th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1–9.
User's personal portable devices such as smartphone, tablet and laptop require continuous authentication of the user to prevent against illegitimate access to the device and personal data. Current authentication techniques require users to enter password or scan fingerprint, making frequent access to the devices inconvenient. In this work, we propose to exploit user's on-body wearable devices to detect their proximity from her portable devices, and use the proximity for continuous authentication of the portable devices. We present PCASA which utilizes acoustic communication for secure proximity estimation with sub-meter level accuracy. PCASA uses Differential Pulse Position Modulation scheme that modulates data through varying the silence period between acoustic pulses to ensure energy efficiency even when authentication operation is being performed once every second. It yields an secure and accurate distance estimation even when user is mobile by utilizing Doppler effect for mobility speed estimation. We evaluate PCASA using smartphone and smartwatches, and show that it supports up to 34 hours of continuous authentication with a fully charged battery.
J
Jin, H., Wang, T., Zhang, M., Li, M., Wang, Y., Snoussi, H..  2020.  Neural Style Transfer for Picture with Gradient Gram Matrix Description. 2020 39th Chinese Control Conference (CCC). :7026–7030.
Despite the high performance of neural style transfer on stylized pictures, we found that Gatys et al [1] algorithm cannot perfectly reconstruct texture style. Output stylized picture could emerge unsatisfied unexpected textures such like muddiness in local area and insufficient grain expression. Our method bases on original algorithm, adding the Gradient Gram description on style loss, aiming to strengthen texture expression and eliminate muddiness. To some extent our method lengthens the runtime, however, its output stylized pictures get higher performance on texture details, especially in the elimination of muddiness.
W
Wu, Y., Li, X., Zou, D., Yang, W., Zhang, X., Jin, H..  2019.  MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :139—150.

Malware scanning of an app market is expected to be scalable and effective. However, existing approaches use either syntax-based features which can be evaded by transformation attacks or semantic-based features which are usually extracted by performing expensive program analysis. Therefor, in this paper, we propose a lightweight graph-based approach to perform Android malware detection. Instead of traditional heavyweight static analysis, we treat function call graphs of apps as social networks and perform social-network-based centrality analysis to represent the semantic features of the graphs. Our key insight is that centrality provides a succinct and fault-tolerant representation of graph semantics, especially for graphs with certain amount of inaccurate information (e.g., inaccurate call graphs). We implement a prototype system, MalScan, and evaluate it on datasets of 15,285 benign samples and 15,430 malicious samples. Experimental results show that MalScan is capable of detecting Android malware with up to 98% accuracy under one second which is more than 100 times faster than two state-of-the-art approaches, namely MaMaDroid and Drebin. We also demonstrate the feasibility of MalScan on market-wide malware scanning by performing a statistical study on over 3 million apps. Finally, in a corpus of dataset collected from Google-Play app market, MalScan is able to identify 18 zero-day malware including malware samples that can evade detection of existing tools.