Visible to the public Biblio

Filters: Author is Cheng, B.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
He, S., Cheng, B., Wang, H., Xiao, X., Cao, Y., Chen, J..  2018.  Data security storage model for fog computing in large-scale IoT application. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :39–44.

With the scale of big data increasing in large-scale IoT application, fog computing is a recent computing paradigm that is extending cloud computing towards the edge of network in the field. There are a large number of storage resources placed on the edge of the network to form a geographical distributed storage system in fog computing system (FCS). It is used to store the big data collected by the fog computing nodes and to reduce the management costs for moving big data to the cloud. However, the storage of fog nodes at the edge of the network faces a direct attack of external threats. In order to improve the security of the storage of fog nodes in FCS, in this paper, we proposed a data security storage model for fog computing (FCDSSM) to realize the integration of storage and security management in large-scale IoT application. We designed a detail of the FCDSSM system architecture, gave a design of the multi-level trusted domain, cooperative working mechanism, data synchronization and key management strategy for the FCDSSM. Experimental results show that the loss of computing and communication performance caused by data security storage in the FCDSSM is within the acceptable range, and the FCDSSM has good scalability. It can be adapted to big data security storage in large-scale IoT application.

Z
Zhang, Y., Duan, L., Sun, C. A., Cheng, B., Chen, J..  2017.  A Cross-Layer Security Solution for Publish/Subscribe-Based IoT Services Communication Infrastructure. 2017 IEEE International Conference on Web Services (ICWS). :580–587.

The publish/subscribe paradigm can be used to build IoT service communication infrastructure owing to its loose coupling and scalability. Its features of decoupling among event producers and event consumers make IoT services collaborations more real-time and flexible, and allow indirect, anonymous and multicast IoT service interactions. However, in this environment, the IoT service cannot directly control the access to the events. This paper proposes a cross-layer security solution to address the above issues. The design principle of our security solution is to embed security policies into events as well as allow the network to route events according to publishers' policies and requirements. This solution helps to improve the system's performance, while keeping features of IoT service interactions and minimizing the event visibility at the same time. Experimental results show that our approach is effective.