Visible to the public Biblio

Filters: Author is Park, M.  [Clear All Filters]
Kim, Y., Ahn, S., Thang, N. C., Choi, D., Park, M..  2019.  ARP Poisoning Attack Detection Based on ARP Update State in Software-Defined Networks. 2019 International Conference on Information Networking (ICOIN). :366—371.

Recently, the novel networking technology Software-Defined Networking(SDN) and Service Function Chaining(SFC) are rapidly growing, and security issues are also emerging for SDN and SFC. However, the research about security and safety on a novel networking environment is still unsatisfactory, and the vulnerabilities have been revealed continuously. Among these security issues, this paper addresses the ARP Poisoning attack to exploit SFC vulnerability, and proposes a method to defend the attack. The proposed method recognizes the repetitive ARP reply which is a feature of ARP Poisoning attack, and detects ARP Poisoning attack. The proposed method overcomes the limitations of the existing detection methods. The proposed method also detects the presence of an attack more accurately.

Usuzaki, S., Aburada, K., Yamaba, H., Katayama, T., Mukunoki, M., Park, M., Okazaki, N..  2018.  Interactive Video CAPTCHA for Better Resistance to Automated Attack. 2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU). :1–2.
A “Completely Automated Public Turing Test to Tell Computers and Humans Apart” (CAPTCHA) widely used online services so that prevents bots from automatic getting a large of accounts. Interactive video type CAPTCHAs that attempt to detect this attack by using delay time due to communication relays have been proposed. However, these approaches remain insufficiently resistant to bots. We propose a CAPTCHA that combines resistant to automated and relay attacks. In our CAPTCHA, the users recognize a moving object (target object) from among a number of randomly appearing decoy objects and tracks the target with mouse cursor. The users pass the test when they were able to track the target for a certain time. Since the target object moves quickly, the delay makes it difficult for a remote solver to break the CAPTCHA during a relay attack. It is also difficult for a bot to track the target using image processing because it has same looks of the decoys. We evaluated our CAPTCHA's resistance to relay and automated attacks. Our results show that, if our CAPTHCA's parameters are set suitable value, a relay attack cannot be established economically and false acceptance rate with bot could be reduced to 0.01% without affecting human success rate.
Joo, M., Seo, J., Oh, J., Park, M., Lee, K..  2018.  Situational Awareness Framework for Cyber Crime Prevention Model in Cyber Physical System. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :837-842.

Recently, IoT, 5G mobile, big data, and artificial intelligence are increasingly used in the real world. These technologies are based on convergenced in Cyber Physical System(Cps). Cps technology requires core technologies to ensure reliability, real-time, safety, autonomy, and security. CPS is the system that can connect between cyberspace and physical space. Cyberspace attacks are confused in the real world and have a lot of damage. The personal information that dealing in CPS has high confidentiality, so the policies and technique will needed to protect the attack in advance. If there is an attack on the CPS, not only personal information but also national confidential data can be leaked. In order to prevent this, the risk is measured using the Factor Analysis of Information Risk (FAIR) Model, which can measure risk by element for situational awareness in CPS environment. To reduce risk by preventing attacks in CPS, this paper measures risk after using the concept of Crime Prevention Through Environmental Design(CPTED).

Cho, S., Han, I., Jeong, H., Kim, J., Koo, S., Oh, H., Park, M..  2018.  Cyber Kill Chain based Threat Taxonomy and its Application on Cyber Common Operational Picture. 2018 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

Over a decade, intelligent and persistent forms of cyber threats have been damaging to the organizations' cyber assets and missions. In this paper, we analyze current cyber kill chain models that explain the adversarial behavior to perform advanced persistent threat (APT) attacks, and propose a cyber kill chain model that can be used in view of cyber situation awareness. Based on the proposed cyber kill chain model, we propose a threat taxonomy that classifies attack tactics and techniques for each attack phase using CAPEC, ATT&CK that classify the attack tactics, techniques, and procedures (TTPs) proposed by MITRE. We also implement a cyber common operational picture (CyCOP) to recognize the situation of cyberspace. The threat situation can be represented on the CyCOP by applying cyber kill chain based threat taxonomy.

Park, H. K., Kim, M. S., Park, M., Lee, K..  2017.  Cyber Situational Awareness Enhancement with Regular Expressions and an Evaluation Methodology. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :406–411.

Cybersecurity is one of critical issues in modern military operations. In cyber operations, security professionals depend on various information and security systems to mitigate cyber threats through enhanced cyber situational awareness. Cyber situational awareness can give decision makers mission completeness and providing appropriate timely decision support for proactive response. The crucial information for cyber situational awareness can be collected at network boundaries through deep packet inspection with security systems. Regular expression is regarded as a practical method for deep packet inspection that is considering a next generation intrusion detection and prevention, however, it is not commonly used by the reason of its resource intensive characteristics. In this paper, we describe our effort and achievement on regular expression processing capability in real time and an evaluation method with experimental result.

Ahmed, M. E., Kim, H., Park, M..  2017.  Mitigating DNS query-based DDoS attacks with machine learning on software-defined networking. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :11–16.

Securing Internet of Things is a challenge because of its multiple points of vulnerability. In particular, Distributed Denial of Service (DDoS) attacks on IoT devices pose a major security challenge to be addressed. In this paper, we propose a DNS query-based DDoS attack mitigation system using Software-Defined Networking (SDN) to block the network traffic for DDoS attacks. With some features provided by SDN, we can analyze traffic patterns and filter suspicious network flows out. To show the feasibility of the proposed system, we particularly implemented a prototype with Dirichlet process mixture model to distinguish benign traffic from malicious traffic and conducted experiments with the dataset collected from real network traces. We demonstrate the effectiveness of the proposed method by both simulations and experiment data obtained from the real network traffic traces.