Visible to the public Biblio

Filters: Author is Hamdi, M.  [Clear All Filters]
Romdhane, R. B., Hammami, H., Hamdi, M., Kim, T..  2019.  At the cross roads of lattice-based and homomorphic encryption to secure data aggregation in smart grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1067—1072.

Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.

Arfaoui, A., Kribeche, A., Boudia, O. R. M., Letaifa, A. Ben, Senouci, S. M., Hamdi, M..  2018.  Context-Aware Authorization and Anonymous Authentication in Wireless Body Area Networks. 2018 IEEE International Conference on Communications (ICC). :1–7.

With the pervasiveness of the Internet of Things (IoT) and the rapid progress of wireless communications, Wireless Body Area Networks (WBANs) have attracted significant interest from the research community in recent years. As a promising networking paradigm, it is adopted to improve the healthcare services and create a highly reliable ubiquitous healthcare system. However, the flourish of WBANs still faces many challenges related to security and privacy preserving. In such pervasive environment where the context conditions dynamically and frequently change, context-aware solutions are needed to satisfy the users' changing needs. Therefore, it is essential to design an adaptive access control scheme that can simultaneously authorize and authenticate users while considering the dynamic context changes. In this paper, we propose a context-aware access control and anonymous authentication approach based on a secure and efficient Hybrid Certificateless Signcryption (H-CLSC) scheme. The proposed scheme combines the merits of Ciphertext-Policy Attribute-Based Signcryption (CP-ABSC) and Identity-Based Broadcast Signcryption (IBBSC) in order to satisfy the security requirements and provide an adaptive contextual privacy. From a security perspective, it achieves confidentiality, integrity, anonymity, context-aware privacy, public verifiability, and ciphertext authenticity. Moreover, the key escrow and public key certificate problems are solved through this mechanism. Performance analysis demonstrates the efficiency and the effectiveness of the proposed scheme compared to benchmark schemes in terms of functional security, storage, communication and computational cost.

Gharsallaoui, R., Hamdi, M., Kim, T..  2017.  A Novel Privacy Technique for Augmented Reality Cloud Gaming Based on Image Authentication. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :252–257.

The evolution of cloud gaming systems is substantially the security requirements for computer games. Although online game development often utilizes artificial intelligence and human computer interaction, game developers and providers often do not pay much attention to security techniques. In cloud gaming, location-based games are augmented reality games which take the original principals of the game and applies them to the real world. In other terms, it uses the real world to impact the game experience. Because the execution of such games is distributed in cloud computing, users cannot be certain where their input and output data are managed. This introduces the possibility to input incorrect data in the exchange between the gamer's terminal and the gaming platform. In this context, we propose a new gaming concept for augmented reality and location-based games in order to solve the aforementioned cheating scenario problem. The merit of our approach is to establish an accurate and verifiable proof that the gamer reached the goal or found the target. The major novelty in our method is that it allows the gamer to submit an authenticated proof related to the game result without altering the privacy of positioning data.

Zouari, J., Hamdi, M., Kim, T. H..  2017.  A privacy-preserving homomorphic encryption scheme for the Internet of Things. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1939–1944.

The Internet of Things is a disruptive paradigm based on the cooperation of a plethora of heterogeneous smart things to collect, transmit, and analyze data from the ambient environment. To this end, many monitored variables are combined by a data analysis module in order to implement efficient context-aware decision mechanisms. To ensure resource efficiency, aggregation is a long established solution, however it is applicable only in the case of one sensed variable. We extend the use of aggregation to the complex context of IoT by proposing a novel approach for secure cooperation of smart things while granting confidentiality and integrity. Traditional solutions for data concealment in resource constrained devices rely on hop-by-hop or end-to-end encryption, which are shown to be inefficient in our context. We use a more sophisticated scheme relying on homomorphic encryption which is not compromise resilient. We combine fully additive encryption with fully additive secret sharing to fulfill the required properties. Thorough security analysis and performance evaluation show a viable tradeoff between security and efficiency for our scheme.