Visible to the public Biblio

Filters: Author is Wu, J.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Brockschmidt, J., Shang, J., Wu, J..  2019.  On the Generality of Facial Forgery Detection. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :43—47.
A variety of architectures have been designed or repurposed for the task of facial forgery detection. While many of these designs have seen great success, they largely fail to address challenges these models may face in practice. A major challenge is posed by generality, wherein models must be prepared to perform in a variety of domains. In this paper, we investigate the ability of state-of-the-art facial forgery detection architectures to generalize. We first propose two criteria for generality: reliably detecting multiple spoofing techniques and reliably detecting unseen spoofing techniques. We then devise experiments which measure how a given architecture performs against these criteria. Our analysis focuses on two state-of-the-art facial forgery detection architectures, MesoNet and XceptionNet, both being convolutional neural networks (CNNs). Our experiments use samples from six state-of-the-art facial forgery techniques: Deepfakes, Face2Face, FaceSwap, GANnotation, ICface, and X2Face. We find MesoNet and XceptionNet show potential to generalize to multiple spoofing techniques but with a slight trade-off in accuracy, and largely fail against unseen techniques. We loosely extrapolate these results to similar CNN architectures and emphasize the need for better architectures to meet the challenges of generality.
C
Cui, H., Liu, C., Hong, X., Wu, J., Sun, D..  2020.  An Improved BICM-ID Receiver for the Time-Varying Underwater Acoustic Communications with DDPSK Modulation. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—4.
Double differential phase shift keying(DDPSK) modulation is an efficient method to compensate the Doppler shifts, whereas the phase noise will be amplified which results in the signal-to-noise ratio (SNR) loss. In this paper, we propose a novel receiver architecture for underwater acoustic DSSS communications with Doppler shifts. The proposed method adopts not only the DDPSK modulation to compensate the Doppler shifts, but also the improved bit-interleaved coded modulation with iterative decoding (BICM-ID) algorithm for DDPSK to recover the SNR loss. The improved DDPSK demodulator adopts the multi-symbol estimation to track the channel variation, and an extended trellis diagram is constructed for DDPSK demodulator. Theoretical simulation shows that our system can obtain around 10.2 dB gain over the uncoded performance, and 7.4 dB gain over the hard-decision decoding performance. Besides, the experiment conducted in the Songhua Lake also shows that the proposed receiver can achieve lower BER performance when Doppler shifts exists.
L
Li, J., Liu, H., Wu, J., Zhu, J., Huifeng, Y., Rui, X..  2019.  Research on Nonlinear Frequency Hopping Communication Under Big Data. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :349—354.

Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.

Liao, S., Wu, J., Li, J., Bashir, A. K..  2020.  Proof-of-Balance: Game-Theoretic Consensus for Controller Load Balancing of SDN. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :231–236.
Software Defined Networking (SDN) focus on the isolation of control plane and data plane, greatly enhancing the network's support for heterogeneity and flexibility. However, although the programmable network greatly improves the performance of all aspects of the network, flexible load balancing across controllers still challenges the current SDN architecture. Complex application scenarios lead to flexible and changeable communication requirements, making it difficult to guarantee the Quality of Service (QoS) for SDN users. To address this issue, this paper proposes a paradigm that uses blockchain to incentive safe load balancing for multiple controllers. We proposed a controller consortium blockchain for secure and efficient load balancing of multi-controllers, which includes a new cryptographic currency balance coin and a novel consensus mechanism Proof-of-Balance (PoB). In addition, we have designed a novel game theory-based incentive mechanism to incentive controllers with tight communication resources to offload tasks to idle controllers. The security analysis and performance simulation results indicate the superiority and effectiveness of the proposed scheme.
Q
Qi, C., Wu, J., Chen, H., Yu, H., Hu, H., Cheng, G..  2017.  Game-Theoretic Analysis for Security of Various Software-Defined Networking (SDN) Architectures. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). :1–5.

Security evaluation of diverse SDN frameworks is of significant importance to design resilient systems and deal with attacks. Focused on SDN scenarios, a game-theoretic model is proposed to analyze their security performance in existing SDN architectures. The model can describe specific traits in different structures, represent several types of information of players (attacker and defender) and quantitatively calculate systems' reliability. Simulation results illustrate dynamic SDN structures have distinct security improvement over static ones. Besides, effective dynamic scheduling mechanisms adopted in dynamic systems can enhance their security further.

W
Wang, Q., Zhao, W., Yang, J., Wu, J., Hu, W., Xing, Q..  2019.  DeepTrust: A Deep User Model of Homophily Effect for Trust Prediction. 2019 IEEE International Conference on Data Mining (ICDM). :618—627.

Trust prediction in online social networks is crucial for information dissemination, product promotion, and decision making. Existing work on trust prediction mainly utilizes the network structure or the low-rank approximation of a trust network. These approaches can suffer from the problem of data sparsity and prediction accuracy. Inspired by the homophily theory, which shows a pervasive feature of social and economic networks that trust relations tend to be developed among similar people, we propose a novel deep user model for trust prediction based on user similarity measurement. It is a comprehensive data sparsity insensitive model that combines a user review behavior and the item characteristics that this user is interested in. With this user model, we firstly generate a user's latent features mined from user review behavior and the item properties that the user cares. Then we develop a pair-wise deep neural network to further learn and represent these user features. Finally, we measure the trust relations between a pair of people by calculating the user feature vector cosine similarity. Extensive experiments are conducted on two real-world datasets, which demonstrate the superior performance of the proposed approach over the representative baseline works.

Wang, Y., Guo, S., Wu, J., Wang, H. H..  2020.  Construction of Audit Internal Control System Based on Online Big Data Mining and Decentralized Model. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :623–626.
Construction of the audit internal control system based on the online big data mining and decentralized model is done in this paper. How to integrate the novel technologies to internal control is the attracting task. IT audit is built on the information system and is independent of the information system itself. Application of the IT audit in enterprises can provide a guarantee for the security of the information system that can give an objective evaluation of the investment. This paper integrates the online big data mining and decentralized model to construct an efficient system. Association discovery is also called a data link. It uses similarity functions, such as the Euclidean distance, edit distance, cosine distance, Jeckard function, etc., to establish association relationships between data entities. These parameters are considered for comprehensive analysis.
Z
Zhang, X., Cao, Y., Yang, M., Wu, J., Luo, T., Liu, Y..  2017.  Droidrevealer: Automatically detecting Mysterious Codes in Android applications. 2017 IEEE Conference on Dependable and Secure Computing. :535–536.

The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.