Visible to the public Biblio

Filters: Author is Deng, H.  [Clear All Filters]
2019-06-24
Cao, H., Liu, S., Guan, Z., Wu, L., Deng, H., Du, X..  2018.  An Efficient Privacy-Preserving Algorithm Based on Randomized Response in IoT-Based Smart Grid. 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :881–886.

In this paper, we propose a new randomized response algorithm that can achieve differential-privacy and utility guarantees for consumer's behaviors, and process a batch of data at each time. Firstly, differing from traditional differential private approach-es, we add randomized response noise into the behavior signa-tures matrix to achieve an acceptable utility-privacy tradeoff. Secondly, a behavior signature modeling method based on sparse coding is proposed. After some lightweight trainings us-ing the energy consumption data, the dictionary will be associat-ed with the behavior characteristics of the electric appliances. At last, through the experimental results verification, we find that our Algorithm can preserve consumer's privacy without comprising utility.

2018-06-11
Deng, H., Xie, H., Ma, W., Mao, Z., Zhou, C..  2017.  Double-bit quantization and weighting for nearest neighbor search. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1717–1721.

Binary embedding is an effective way for nearest neighbor (NN) search as binary code is storage efficient and fast to compute. It tries to convert real-value signatures into binary codes while preserving similarity of the original data. However, it greatly decreases the discriminability of original signatures due to the huge loss of information. In this paper, we propose a novel method double-bit quantization and weighting (DBQW) to solve the problem by mapping each dimension to double-bit binary code and assigning different weights according to their spatial relationship. The proposed method is applicable to a wide variety of embedding techniques, such as SH, PCA-ITQ and PCA-RR. Experimental comparisons on two datasets show that DBQW for NN search can achieve remarkable improvements in query accuracy compared to original binary embedding methods.

2018-02-02
Zheng, T. X., Yang, Q., Wang, H. M., Deng, H., Mu, P., Zhang, W..  2017.  Improving physical layer security for wireless ad hoc networks via full-duplex receiver jamming. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1–5.

This paper studies physical layer security in a wireless ad hoc network with numerous legitimate transmitter-receiver pairs and passive eavesdroppers. A hybrid full-/half-duplex receiver deployment strategy is proposed to secure legitimate transmissions, by letting a fraction of legitimate receivers work in the full-duplex (FD) mode sending jamming signals to confuse eavesdroppers upon their own information receptions, and other receivers work in the half-duplex mode just receiving desired signals. This paper aims to properly choose the fraction of the FD receivers to enhance network security. Tractable expressions for the connection outage probability and the secrecy outage probability of a typical legitimate link are first derived, based on which the network-wide secrecy throughput is maximized. Some insights into the optimal fraction are further developed. It is concluded that the fraction of the FD receivers triggers a non-trivial trade-off between reliability and secrecy, and the optimal fraction significantly improves the network security performance.