Visible to the public Biblio

Filters: Author is Woo, B. L.  [Clear All Filters]
Birch, G. C., Woo, B. L., LaCasse, C. F., Stubbs, J. J., Dagel, A. L..  2017.  Computational optical physical unclonable functions. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Physical unclonable functions (PUFs) are devices which are easily probed but difficult to predict. Optical PUFs have been discussed within the literature, with traditional optical PUFs typically using spatial light modulators, coherent illumination, and scattering volumes; however, these systems can be large, expensive, and difficult to maintain alignment in practical conditions. We propose and demonstrate a new kind of optical PUF based on computational imaging and compressive sensing to address these challenges with traditional optical PUFs. This work describes the design, simulation, and prototyping of this computational optical PUF (COPUF) that utilizes incoherent polychromatic illumination passing through an additively manufactured refracting optical polymer element. We demonstrate the ability to pass information through a COPUF using a variety of sampling methods, including the use of compressive sensing. The sensitivity of the COPUF system is also explored. We explore non-traditional PUF configurations enabled by the COPUF architecture. The double COPUF system, which employees two serially connected COPUFs, is proposed and analyzed as a means to authenticate and communicate between two entities that have previously agreed to communicate. This configuration enables estimation of a message inversion key without the calculation of individual COPUF inversion keys at any point in the PUF life cycle. Our results show that it is possible to construct inexpensive optical PUFs using computational imaging. This could lead to new uses of PUFs in places where electrical PUFs cannot be utilized effectively, as low cost tags and seals, and potentially as authenticating and communicating devices.

Stubbs, J. J., Birch, G. C., Woo, B. L., Kouhestani, C. G..  2017.  Physical security assessment with convolutional neural network transfer learning. 2017 International Carnahan Conference on Security Technology (ICCST). :1–6.

Deep learning techniques have demonstrated the ability to perform a variety of object recognition tasks using visible imager data; however, deep learning has not been implemented as a means to autonomously detect and assess targets of interest in a physical security system. We demonstrate the use of transfer learning on a convolutional neural network (CNN) to significantly reduce training time while keeping detection accuracy of physical security relevant targets high. Unlike many detection algorithms employed by video analytics within physical security systems, this method does not rely on temporal data to construct a background scene; targets of interest can halt motion indefinitely and still be detected by the implemented CNN. A key advantage of using deep learning is the ability for a network to improve over time. Periodic retraining can lead to better detection and higher confidence rates. We investigate training data size versus CNN test accuracy using physical security video data. Due to the large number of visible imagers, significant volume of data collected daily, and currently deployed human in the loop ground truth data, physical security systems present a unique environment that is well suited for analysis via CNNs. This could lead to the creation of algorithmic element that reduces human burden and decreases human analyzed nuisance alarms.