Visible to the public Biblio

Filters: Author is Yang, C.  [Clear All Filters]
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..  2020.  Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
Zhong, J., Yang, C..  2019.  A Compositionality Assembled Model for Learning and Recognizing Emotion from Bodily Expression. 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). :821–826.
When we are express our internal status, such as emotions, the human body expression we use follows the compositionality principle. It is a theory in linguistic which proposes that the single components of the bodily presentation as well as the rules used to combine them are the major parts to finish this process. In this paper, such principle is applied to the process of expressing and recognizing emotional states through body expression, in which certain key features can be learned to represent certain primitives of the internal emotional state in the form of basic variables. This is done by a hierarchical recurrent neural learning framework (RNN) because of its nonlinear dynamic bifurcation, so that variables can be learned to represent different hierarchies. In addition, we applied some adaptive learning techniques in machine learning for the requirement of real-time emotion recognition, in which a stable representation can be maintained compared to previous work. The model is examined by comparing the PB values between the training and recognition phases. This hierarchical model shows the rationality of the compositionality hypothesis by the RNN learning and explains how key features can be used and combined in bodily expression to show the emotional state.
Hunag, C., Yang, C., Weng, C., Chen, Y., Wang, S..  2019.  Secure Protocol for Identity-based Provable Data Possession in Cloud Storage. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :327–331.
Remote data possession is becoming an increasingly important issue in cloud storage. It enables users to verify if their outsourced data have remained intact while in cloud storage. The existing remote data audit (RDA) protocols were designed with the public key infrastructure (PKI) system. However, this incurs considerable costs when users need to frequently access data from the cloud service provider with PKI. This study proposes a protocol, called identity-based RDA (ID-RDA) that addresses this problem without the need for users’ certificates. This study outperforms existing RDA protocols in computation and communication.
Yang, C., Li, Z., Qu, W., Liu, Z., Qi, H..  2017.  Grid-Based Indexing and Search Algorithms for Large-Scale and High-Dimensional Data. 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 2017 11th International Conference on Frontier of Computer Science and Technology 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). :46–51.

The rapid development of Internet has resulted in massive information overloading recently. These information is usually represented by high-dimensional feature vectors in many related applications such as recognition, classification and retrieval. These applications usually need efficient indexing and search methods for such large-scale and high-dimensional database, which typically is a challenging task. Some efforts have been made and solved this problem to some extent. However, most of them are implemented in a single machine, which is not suitable to handle large-scale database.In this paper, we present a novel data index structure and nearest neighbor search algorithm implemented on Apache Spark. We impose a grid on the database and index data by non-empty grid cells. This grid-based index structure is simple and easy to be implemented in parallel. Moreover, we propose to build a scalable KNN graph on the grids, which increase the efficiency of this index structure by a low cost in parallel implementation. Finally, experiments are conducted in both public databases and synthetic databases, showing that the proposed methods achieve overall high performance in both efficiency and accuracy.

Li, C., Yang, C..  2017.  Cryptographic key management methods for mission-critical wireless networks. 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). :33–36.
When a large scale disaster strikes, it demands an efficient communication and coordination among first responders to save life and other community resources. Normally, the traditional communication infrastructures such as landline phone or cellular networks are damaged and dont provide adequate communication services to first responders for exchanging emergency related information. Wireless mesh networks is the promising alternatives in such type of situations. The security requirements for emergency response communications include privacy, data integrity, authentication, access control and availability. To build a secure communication system, usually the first attempt is to employ cryptographic keys. In critical-mission wireless mesh networks, a mesh router needs to maintain secure data communication with its neighboring mesh routers. The effective designs on fast pairwise key generation and rekeying for mesh routers are critical for emergency response and are essential to protect unicast traffic. In this paper, we present a security-enhanced session key generation and rekeying protocols EHPFS (enhanced 4-way handshake with PFS support). It eliminate the DoS attack problem of the 4-way handshake in 802.11s. EHPFS provides additional support for perfect forward secrecy (PFS). Even in case a Primary Master Key (PMK) is exposed, the session key PTK will not be compromised. The performance and security analysis show that EHPFS is efficient.