Visible to the public Biblio

Filters: Author is Cao, Y.  [Clear All Filters]
2019-10-08
Liu, Y., Yuan, X., Li, M., Zhang, W., Zhao, Q., Zhong, J., Cao, Y., Li, Y., Chen, L., Li, H. et al..  2018.  High Speed Device-Independent Quantum Random Number Generation without Detection Loophole. 2018 Conference on Lasers and Electro-Optics (CLEO). :1–2.

We report a an experimental study of device-independent quantum random number generation based on an detection-loophole free Bell test with entangled photons. After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10-5.

2018-10-26
He, S., Cheng, B., Wang, H., Xiao, X., Cao, Y., Chen, J..  2018.  Data security storage model for fog computing in large-scale IoT application. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :39–44.

With the scale of big data increasing in large-scale IoT application, fog computing is a recent computing paradigm that is extending cloud computing towards the edge of network in the field. There are a large number of storage resources placed on the edge of the network to form a geographical distributed storage system in fog computing system (FCS). It is used to store the big data collected by the fog computing nodes and to reduce the management costs for moving big data to the cloud. However, the storage of fog nodes at the edge of the network faces a direct attack of external threats. In order to improve the security of the storage of fog nodes in FCS, in this paper, we proposed a data security storage model for fog computing (FCDSSM) to realize the integration of storage and security management in large-scale IoT application. We designed a detail of the FCDSSM system architecture, gave a design of the multi-level trusted domain, cooperative working mechanism, data synchronization and key management strategy for the FCDSSM. Experimental results show that the loss of computing and communication performance caused by data security storage in the FCDSSM is within the acceptable range, and the FCDSSM has good scalability. It can be adapted to big data security storage in large-scale IoT application.

2018-02-21
Zhang, X., Cao, Y., Yang, M., Wu, J., Luo, T., Liu, Y..  2017.  Droidrevealer: Automatically detecting Mysterious Codes in Android applications. 2017 IEEE Conference on Dependable and Secure Computing. :535–536.

The state-of-the-art Android malware often encrypts or encodes malicious code snippets to evade malware detection. In this paper, such undetectable codes are called Mysterious Codes. To make such codes detectable, we design a system called Droidrevealer to automatically identify Mysterious Codes and then decode or decrypt them. The prototype of Droidrevealer is implemented and evaluated with 5,600 malwares. The results show that 257 samples contain the Mysterious Codes and 11,367 items are exposed. Furthermore, several sensitive behaviors hidden in the Mysterious Codes are disclosed by Droidrevealer.