Visible to the public Biblio

Filters: Author is Xie, H.  [Clear All Filters]
Zhang, X., Xie, H., Lui, J. C. S..  2018.  Sybil Detection in Social-Activity Networks: Modeling, Algorithms and Evaluations. 2018 IEEE 26th International Conference on Network Protocols (ICNP). :44–54.

Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.

Xie, H., Lv, K., Hu, C..  2018.  An Improved Monte Carlo Graph Search Algorithm for Optimal Attack Path Analysis. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :307-315.

The problem of optimal attack path analysis is one of the hotspots in network security. Many methods are available to calculate an optimal attack path, such as Q-learning algorithm, heuristic algorithms, etc. But most of them have shortcomings. Some methods can lead to the problem of path loss, and some methods render the result un-comprehensive. This article proposes an improved Monte Carlo Graph Search algorithm (IMCGS) to calculate optimal attack paths in target network. IMCGS can avoid the problem of path loss and get comprehensive results quickly. IMCGS is divided into two steps: selection and backpropagation, which is used to calculate optimal attack paths. A weight vector containing priority, host connection number, CVSS value is proposed for every host in an attack path. This vector is used to calculate the evaluation value, the total CVSS value and the average CVSS value of a path in the target network. Result for a sample test network is presented to demonstrate the capabilities of the proposed algorithm to generate optimal attack paths in one single run. The results obtained by IMCGS show good performance and are compared with Ant Colony Optimization Algorithm (ACO) and k-zero attack graph.

Deng, H., Xie, H., Ma, W., Mao, Z., Zhou, C..  2017.  Double-bit quantization and weighting for nearest neighbor search. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1717–1721.

Binary embedding is an effective way for nearest neighbor (NN) search as binary code is storage efficient and fast to compute. It tries to convert real-value signatures into binary codes while preserving similarity of the original data. However, it greatly decreases the discriminability of original signatures due to the huge loss of information. In this paper, we propose a novel method double-bit quantization and weighting (DBQW) to solve the problem by mapping each dimension to double-bit binary code and assigning different weights according to their spatial relationship. The proposed method is applicable to a wide variety of embedding techniques, such as SH, PCA-ITQ and PCA-RR. Experimental comparisons on two datasets show that DBQW for NN search can achieve remarkable improvements in query accuracy compared to original binary embedding methods.

Wang, C., Xie, H., Bie, Z., Yan, C., Lin, Y..  2017.  Reliability evaluation of AC/DC hybrid power grid considering transient security constraints. 2017 13th IEEE Conference on Automation Science and Engineering (CASE). :1237–1242.

With the rapid development of DC transmission technology and High Voltage Direct Current (HVDC) programs, the reliability of AC/DC hybrid power grid draws more and more attentions. The paper takes both the system static and dynamic characteristics into account, and proposes a novel AC/DC hybrid system reliability evaluation method considering transient security constraints based on Monte-Carlo method and transient stability analytical method. The interaction of AC system and DC system after fault is considered in evaluation process. The transient stability analysis is performed firstly when fault occurs in the system and BPA software is applied to the analysis to improve the computational accuracy and speed. Then the new system state is generated according to the transient analysis results. Then a minimum load shedding model of AC/DC hybrid system with HVDC is proposed. And then adequacy analysis is taken to the new state. The proposed method can evaluate the reliability of AC/DC hybrid grid more comprehensively and reduce the complexity of problem which is tested by IEEE-RTS 96 system and an actual large-scale system.