Visible to the public Biblio

Filters: Author is Wu, C.  [Clear All Filters]
Ti, Y., Wu, C., Yu, C., Kuo, S..  2020.  Benchmarking Dynamic Searchable Symmetric Encryption Scheme for Cloud-Internet of Things Applications. IEEE Access. 8:1715–1732.
Recently, the rapid development of Internet of things (IoT) has resulted in the generation of a considerable amount of data, which should be stored. Therefore, it is necessary to develop methods that can easily capture, save, and modify these data. The data generated using IoT contain private information; therefore sufficient security features should be incorporated to ensure that potential attackers cannot access the data. Researchers from various fields are attempting to achieve data security. One of the major challenges is that IoT is a paradigm of how each device in the Internet infrastructure is interconnected to a globally dynamic network. When searching in dynamic cloud-stored data, sensitive data can be easily leaked. IoT data storage and retrieval from untrusted cloud servers should be secure. Searchable symmetric encryption (SSE) is a vital technology in the field of cloud storage. SSE allows users to use keywords to search for data in an untrusted cloud server but the keywords and the data content are concealed from the server. However, an SSE database is seldom used by cloud operators because the data stored on the cloud server is often modified. The server cannot update the data without decryption because the data are encrypted by the user. Therefore, dynamic SSE (DSSE) has been developed in recent years to support the aforementioned requirements. Instead of decrypting the data stored by customers, DSSE adds or deletes encrypted data on the server. A number of DSSE systems based on linked list structures or blind storage (a new primitive) have been proposed. From the perspective of functionality, extensibility, and efficiency, these DSSE systems each have their own advantages and drawbacks. The most crucial aspect of a system that is used in the cloud industry is the trade-off between performance and security. Therefore, we compared the efficiency and security of multiple DSSE systems and identified their shortcomings to develop an improved system.
Feng, Y., Sun, G., Liu, Z., Wu, C., Zhu, X., Wang, Z., Wang, B..  2020.  Attack Graph Generation and Visualization for Industrial Control Network. 2020 39th Chinese Control Conference (CCC). :7655–7660.
Attack graph is an effective way to analyze the vulnerabilities for industrial control networks. We develop a vulnerability correlation method and a practical visualization technology for industrial control network. First of all, we give a complete attack graph analysis for industrial control network, which focuses on network model and vulnerability context. Particularly, a practical attack graph algorithm is proposed, including preparing environments and vulnerability classification and correlation. Finally, we implement a three-dimensional interactive attack graph visualization tool. The experimental results show validation and verification of the proposed method.
Wu, C., Kuo, M., Lee, K..  2018.  A Dynamic-Key Secure Scan Structure Against Scan-Based Side Channel and Memory Cold Boot Attacks. 2018 IEEE 27th Asian Test Symposium (ATS). :48-53.

Scan design is a universal design for test (DFT) technology to increase the observability and controllability of the circuits under test by using scan chains. However, it also leads to a potential security problem that attackers can use scan design as a backdoor to extract confidential information. Researchers have tried to address this problem by using secure scan structures that usually have some keys to confirm the identities of users. However, the traditional methods to store intermediate data or keys in memory are also under high risk of being attacked. In this paper, we propose a dynamic-key secure DFT structure that can defend scan-based and memory attacks without decreasing the system performance and the testability. The main idea is to build a scan design key generator that can generate the keys dynamically instead of storing and using keys in the circuit statically. Only specific patterns derived from the original test patterns are valid to construct the keys and hence the attackers cannot shift in any other patterns to extract correct internal response from the scan chains or retrieve the keys from memory. Analysis results show that the proposed method can achieve a very high security level and the security level will not decrease no matter how many guess rounds the attackers have tried due to the dynamic nature of our method.

Su, J. C., Wu, C., Jiang, H., Maji, S..  2017.  Reasoning About Fine-Grained Attribute Phrases Using Reference Games. 2017 IEEE International Conference on Computer Vision (ICCV). :418–427.

We present a framework for learning to describe finegrained visual differences between instances using attribute phrases. Attribute phrases capture distinguishing aspects of an object (e.g., “propeller on the nose” or “door near the wing” for airplanes) in a compositional manner. Instances within a category can be described by a set of these phrases and collectively they span the space of semantic attributes for a category. We collect a large dataset of such phrases by asking annotators to describe several visual differences between a pair of instances within a category. We then learn to describe and ground these phrases to images in the context of a reference game between a speaker and a listener. The goal of a speaker is to describe attributes of an image that allows the listener to correctly identify it within a pair. Data collected in a pairwise manner improves the ability of the speaker to generate, and the ability of the listener to interpret visual descriptions. Moreover, due to the compositionality of attribute phrases, the trained listeners can interpret descriptions not seen during training for image retrieval, and the speakers can generate attribute-based explanations for differences between previously unseen categories. We also show that embedding an image into the semantic space of attribute phrases derived from listeners offers 20% improvement in accuracy over existing attributebased representations on the FGVC-aircraft dataset.