Visible to the public Biblio

Filters: Author is Alzaid, H.  [Clear All Filters]
Conference Paper
Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Yusuf, S. E., Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Evaluating the Effectiveness of Security Metrics for Dynamic Networks. 2017 IEEE Trustcom/BigDataSE/ICESS. :277–284.

It is difficult to assess the security of modern enterprise networks because they are usually dynamic with configuration changes (such as changes in topology, firewall rules, etc). Graphical security models (e.g., Attack Graphs and Attack Trees) and security metrics (e.g., attack cost, shortest attack path) are widely used to systematically analyse the security posture of network systems. However, there are problems using them to assess the security of dynamic networks. First, the existing graphical security models are unable to capture dynamic changes occurring in the networks over time. Second, the existing security metrics are not designed for dynamic networks such that their effectiveness to the dynamic changes in the network is still unknown. In this paper, we conduct a comprehensive analysis via simulations to evaluate the effectiveness of security metrics using a Temporal Hierarchical Attack Representation Model. Further, we investigate the varying effects of security metrics when changes are observed in the dynamic networks. Our experimental analysis shows that different security metrics have varying security posture changes with respect to changes in the network.

Ge, M., Hong, J. B., Alzaid, H., Kim, D. S..  2017.  Security Modeling and Analysis of Cross-Protocol IoT Devices. 2017 IEEE Trustcom/BigDataSE/ICESS. :1043–1048.

In the Internet of Things (IoT), smart devices are connected using various communication protocols, such as Wi-Fi, ZigBee. Some IoT devices have multiple built-in communication modules. If an IoT device equipped with multiple communication protocols is compromised by an attacker using one communication protocol (e.g., Wi-Fi), it can be exploited as an entry point to the IoT network. Another protocol (e.g., ZigBee) of this IoT device could be used to exploit vulnerabilities of other IoT devices using the same communication protocol. In order to find potential attacks caused by this kind of cross-protocol devices, we group IoT devices based on their communication protocols and construct a graphical security model for each group of devices using the same communication protocol. We combine the security models via the cross-protocol devices and compute hidden attack paths traversing different groups of devices. We use two use cases in the smart home scenario to demonstrate our approach and discuss some feasible countermeasures.