Visible to the public Biblio

Filters: Author is Xu, J.  [Clear All Filters]
Xu, J., Ying, C., Tan, S., Sun, Z., Wang, P., Sun, Z..  2018.  An Attribute-Based Searchable Encryption Scheme Supporting Trapdoor Updating. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :7-14.
In the cloud computing environment, a growing number of users share their own data files through cloud storage. However, there will be some security and privacy problems due to the reason that the cloud is not completely trusted, so it needs to be resolved by access control. Attribute-based encryption (ABE) and searchable encryption (SE) can solve fine-grained access control. At present, researchers combine the two to propose an attribute-based searchable encryption scheme and achieved remarkable results. Nevertheless, most of existing attribute-based searchable encryption schemes cannot resist online/offline keyword guessing attack. To solve the problem, we present an attribute-based (CP-ABE) searchable encryption scheme that supports trapdoor updating (CSES-TU). In this scheme, the data owner can formulate an access strategy for the encrypted data. Only the attributes of the data user are matched with the strategy can the effective trapdoor be generated and the ciphertext be searched, and that this scheme will update trapdoors at the same time. Even if the keywords are the same, new trapdoors will be generated every time when the keyword is searched, thus minimizing the damage caused by online/offline keyword guessing attack. Finally, the performance of the scheme is analyzed, and the proof of correctness and security are given at the same time.
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.
Gaston, J., Narayanan, M., Dozier, G., Cothran, D. L., Arms-Chavez, C., Rossi, M., King, M. C., Xu, J..  2018.  Authorship Attribution vs. Adversarial Authorship from a LIWC and Sentiment Analysis Perspective. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :920-927.

Although Stylometry has been effectively used for Authorship Attribution, there is a growing number of methods being developed that allow authors to mask their identity [2, 13]. In this paper, we investigate the usage of non-traditional feature sets for Authorship Attribution. By using non-traditional feature sets, one may be able to reveal the identity of adversarial authors who are attempting to evade detection from Authorship Attribution systems that are based on more traditional feature sets. In addition, we demonstrate how GEFeS (Genetic & Evolutionary Feature Selection) can be used to evolve high-performance hybrid feature sets composed of two non-traditional feature sets for Authorship Attribution: LIWC (Linguistic Inquiry & Word Count) and Sentiment Analysis. These hybrids were able to reduce the Adversarial Effectiveness on a test set presented in [2] by approximately 33.4%.

Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
Faust, C., Dozier, G., Xu, J., King, M. C..  2017.  Adversarial Authorship, Interactive Evolutionary Hill-Climbing, and Author CAAT-III. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

We are currently witnessing the development of increasingly effective author identification systems (AISs) that have the potential to track users across the internet based on their writing style. In this paper, we discuss two methods for providing user anonymity with respect to writing style: Adversarial Stylometry and Adversarial Authorship. With Adversarial Stylometry, a user attempts to obfuscate their writing style by consciously altering it. With Adversarial Authorship, a user can select an author cluster target (ACT) and write toward this target with the intention of subverting an AIS so that the user's writing sample will be misclassified Our results show that Adversarial Authorship via interactive evolutionary hill-climbing outperforms Adversarial Stylometry.

Fan, Z., Wu, H., Xu, J., Tang, Y..  2017.  An Optimization Algorithm for Spatial Information Network Self-Healing Based on Software Defined Network. 2017 12th International Conference on Computer Science and Education (ICCSE). :369–374.

Spatial information network is an important part of the integrated space-terrestrial information network, its bearer services are becoming increasingly complex, and real-time requirements are also rising. Due to the structural vulnerability of the spatial information network and the dynamics of the network, this poses a serious challenge to how to ensure reliable and stable data transmission. The structural vulnerability of the spatial information network and the dynamics of the network brings a serious challenge of ensuring reliable and stable data transmission. Software Defined Networking (SDN), as a new network architecture, not only can quickly adapt to new business, but also make network reconfiguration more intelligent. In this paper, SDN is used to design the spatial information network architecture. An optimization algorithm for network self-healing based on SDN is proposed to solve the failure of switching node. With the guarantee of Quality of Service (QoS) requirement, the link is updated with the least link to realize the fast network reconfiguration and recovery. The simulation results show that the algorithm proposed in this paper can effectively reduce the delay caused by fault recovery.