Visible to the public Biblio

Filters: Author is Srinivasan, P.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
K, S., Devi, K. Suganya, Srinivasan, P., Dheepa, T., Arpita, B., singh, L. Dolendro.  2020.  Joint Correlated Compressive Sensing based on Predictive Data Recovery in WSNs. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–5.
Data sampling is critical process for energy constrained Wireless Sensor Networks. In this article, we proposed a Predictive Data Recovery Compressive Sensing (PDR-CS) procedure for data sampling. PDR-CS samples data measurements from the monitoring field on the basis of spatial and temporal correlation and sparse measurements recovered at the Sink. Our proposed algorithm, PDR-CS extends the iterative re-weighted -ℓ1(IRW - ℓ1) minimization and regularization on the top of Spatio-temporal compressibility for enhancing accuracy of signal recovery and reducing the energy consumption. The simulation study shows that from the less number of samples are enough to recover the signal. And also compared with the other compressive sensing procedures, PDR-CS works with less time.
Sekar, K., Devi, K. Suganya, Srinivasan, P., SenthilKumar, V. M..  2020.  Deep Wavelet Architecture for Compressive sensing Recovery. 2020 Seventh International Conference on Information Technology Trends (ITT). :185–189.
The deep learning-based compressive Sensing (CS) has shown substantial improved performance and in run-time reduction with signal sampling and reconstruction. In most cases, moreover, these techniques suffer from disrupting artefacts or high-frequency contents at low sampling ratios. Similarly, this occurs in the multi-resolution sampling method, which further collects more components with lower frequencies. A promising innovation combining CS with convolutionary neural network has eliminated the sparsity constraint yet recovery persists slow. We propose a Deep wavelet based compressive sensing with multi-resolution framework provides better improvement in reconstruction as well as run time. The proposed model demonstrates outstanding quality on test functions over previous approaches.
Shahid, U., Farooqi, S., Ahmad, R., Shafiq, Z., Srinivasan, P., Zaffar, F..  2017.  Accurate Detection of Automatically Spun Content via Stylometric Analysis. 2017 IEEE International Conference on Data Mining (ICDM). :425–434.

Spammers use automated content spinning techniques to evade plagiarism detection by search engines. Text spinners help spammers in evading plagiarism detectors by automatically restructuring sentences and replacing words or phrases with their synonyms. Prior work on spun content detection relies on the knowledge about the dictionary used by the text spinning software. In this work, we propose an approach to detect spun content and its seed without needing the text spinner's dictionary. Our key idea is that text spinners introduce stylometric artifacts that can be leveraged for detecting spun documents. We implement and evaluate our proposed approach on a corpus of spun documents that are generated using a popular text spinning software. The results show that our approach can not only accurately detect whether a document is spun but also identify its source (or seed) document - all without needing the dictionary used by the text spinner.