Visible to the public Biblio

Filters: Author is Gao, Y.  [Clear All Filters]
Toma, A., Krayani, A., Marcenaro, L., Gao, Y., Regazzoni, C. S..  2020.  Deep Learning for Spectrum Anomaly Detection in Cognitive mmWave Radios. 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications. :1–7.
Millimeter Wave (mmWave) band can be a solution to serve the vast number of Internet of Things (IoT) and Vehicle to Everything (V2X) devices. In this context, Cognitive Radio (CR) is capable of managing the mmWave spectrum sharing efficiently. However, Cognitive mmWave Radios are vulnerable to malicious users due to the complex dynamic radio environment and the shared access medium. This indicates the necessity to implement techniques able to detect precisely any anomalous behaviour in the spectrum to build secure and efficient radios. In this work, we propose a comparison framework between deep generative models: Conditional Generative Adversarial Network (C-GAN), Auxiliary Classifier Generative Adversarial Network (AC-GAN), and Variational Auto Encoder (VAE) used to detect anomalies inside the dynamic radio spectrum. For the sake of the evaluation, a real mmWave dataset is used, and results show that all of the models achieve high probability in detecting spectrum anomalies. Especially, AC-GAN that outperforms C-GAN and VAE in terms of accuracy and probability of detection.
Ayoade, G., Akbar, K. A., Sahoo, P., Gao, Y., Agarwal, A., Jee, K., Khan, L., Singhal, A..  2020.  Evolving Advanced Persistent Threat Detection using Provenance Graph and Metric Learning. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.

Gao, Y., Sibirtseva, E., Castellano, G., Kragic, D..  2019.  Fast Adaptation with Meta-Reinforcement Learning for Trust Modelling in Human-Robot Interaction. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :305—312.

In socially assistive robotics, an important research area is the development of adaptation techniques and their effect on human-robot interaction. We present a meta-learning based policy gradient method for addressing the problem of adaptation in human-robot interaction and also investigate its role as a mechanism for trust modelling. By building an escape room scenario in mixed reality with a robot, we test our hypothesis that bi-directional trust can be influenced by different adaptation algorithms. We found that our proposed model increased the perceived trustworthiness of the robot and influenced the dynamics of gaining human's trust. Additionally, participants evaluated that the robot perceived them as more trustworthy during the interactions with the meta-learning based adaptation compared to the previously studied statistical adaptation model.

Gao, Y., Li, X., Li, J., Gao, Y., Guo, N..  2018.  Graph Mining-based Trust Evaluation Mechanism with Multidimensional Features for Large-scale Heterogeneous Threat Intelligence. 2018 IEEE International Conference on Big Data (Big Data). :1272–1277.
More and more organizations and individuals start to pay attention to real-time threat intelligence to protect themselves from the complicated, organized, persistent and weaponized cyber attacks. However, most users worry about the trustworthiness of threat intelligence provided by TISPs (Threat Intelligence Sharing Platforms). The trust evaluation mechanism has become a hot topic in applications of TISPs. However, most current TISPs do not present any practical solution for trust evaluation of threat intelligence itself. In this paper, we propose a graph mining-based trust evaluation mechanism with multidimensional features for large-scale heterogeneous threat intelligence. This mechanism provides a feasible scheme and achieves the task of trust evaluation for TISP, through the integration of a trust-aware intelligence architecture model, a graph mining-based intelligence feature extraction method, and an automatic and interpretable trust evaluation algorithm. We implement this trust evaluation mechanism in a practical TISP (called GTTI), and evaluate the performance of our system on a real-world dataset from three popular cyber threat intelligence sharing platforms. Experimental results show that our mechanism can achieve 92.83% precision and 93.84% recall in trust evaluation. To the best of our knowledge, this work is the first to evaluate the trust level of heterogeneous threat intelligence automatically from the perspective of graph mining with multidimensional features including source, content, time, and feedback. Our work is beneficial to provide assistance on intelligence quality for the decision-making of human analysts, build a trust-aware threat intelligence sharing platform, and enhance the availability of heterogeneous threat intelligence to protect organizations against cyberspace attacks effectively.
Gao, Y..  2018.  An Improved Hybrid Group Intelligent Algorithm Based on Artificial Bee Colony and Particle Swarm Optimization. 2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS). :160–163.
Aiming at the disadvantage of poor convergence performance of PSO and artificial swarm algorithm, an improved hybrid algorithm is proposed to overcome the shortcomings of complex optimization problems. Through the test of four standard function by hybrid algorithm and compared the result with standard particle swarm optimization (PSO) algorithm and Artificial Bee Colony (ABC) algorithm, the convergence rate and convergence precision of the hybrid algorithm are both superior to those of the standard particle swarm algorithm and Artificial Bee Colony algorithm, presenting a better optimal performance.
Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.