Visible to the public Biblio

Filters: Author is Zhang, F.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Chang, B., Zhang, F., Chen, B., Li, Y., Zhu, W., Tian, Y., Wang, Z., Ching, A..  2018.  MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :454–465.

We introduce MobiCeal, the first practical Plausibly Deniable Encryption (PDE) system for mobile devices that can defend against strong coercive multi-snapshot adversaries, who may examine the storage medium of a user's mobile device at different points of time and force the user to decrypt data. MobiCeal relies on "dummy write" to obfuscate the differences between multiple snapshots of storage medium due to existence of hidden data. By incorporating PDE in block layer, MobiCeal supports a broad deployment of any block-based file systems on mobile devices. More importantly, MobiCeal is secure against side channel attacks which pose a serious threat to existing PDE schemes. A proof of concept implementation of MobiCeal is provided on an LG Nexus 4 Android phone using Android 4.2.2. It is shown that the performance of MobiCeal is significantly better than prior PDE systems against multi-snapshot adversaries.

F
Fan, X., Zhang, F., Turamat, E., Tong, C., Wu, J. H., Wang, K..  2020.  Provenance-based Classification Policy based on Encrypted Search. 2020 2nd International Conference on Industrial Artificial Intelligence (IAI). :1–6.
As an important type of cloud data, digital provenance is arousing increasing attention on improving system performance. Currently, provenance has been employed to provide cues regarding access control and to estimate data quality. However, provenance itself might also be sensitive information. Therefore, provenance might be encrypted and stored in the Cloud. In this paper, we provide a mechanism to classify cloud documents by searching specific keywords from their encrypted provenance, and we prove our scheme achieves semantic security. In term of application of the proposed techniques, considering that files are classified to store separately in the cloud, in order to facilitate the regulation and security protection for the files, the classification policies can use provenance as conditions to determine the category of a document. Such as the easiest sample policy goes like: the documents have been reviewed twice can be classified as “public accessible”, which can be accessed by the public.
X
Xi, X., Zhang, F., Lian, Z..  2017.  Implicit Trust Relation Extraction Based on Hellinger Distance. 2017 13th International Conference on Semantics, Knowledge and Grids (SKG). :223–227.

Recent studies have shown that adding explicit social trust information to social recommendation significantly improves the prediction accuracy of ratings, but it is difficult to obtain a clear trust data among users in real life. Scholars have studied and proposed some trust measure methods to calculate and predict the interaction and trust between users. In this article, a method of social trust relationship extraction based on hellinger distance is proposed, and user similarity is calculated by describing the f-divergence of one side node in user-item bipartite networks. Then, a new matrix factorization model based on implicit social relationship is proposed by adding the extracted implicit social relations into the improved matrix factorization. The experimental results support that the effect of using implicit social trust to recommend is almost the same as that of using actual explicit user trust ratings, and when the explicit trust data cannot be extracted, our method has a better effect than the other traditional algorithms.

Z
Zhang, F., Masna, N. V. R., Bhunia, S., Chen, C., Mandal, S..  2017.  Authentication and Traceability of Food Products through the Supply Chain Using NQR Spectroscopy. 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS). :1–4.

Maintaining the security and integrity of our food supply chain has emerged as a critical need. In this paper, we describe a novel authentication approach that can significantly improve the security of the food supply chain. It relies on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of packaged food products. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment such that signal properties are influenced by the manufacturing process, thus generating a manufacturer-specific watermark or intrinsic tag for the product. Such tags enable us to uniquely characterize and authenticate products of identical composition but from different manufacturers based on their NQR signal parameters. These intrinsic tags can be used to verify the integrity of a product and trace it through the supply chain. We apply a support vector machine (SVM)-based classification approach that trains the SVM with measured NQR parameters and then authenticates food products by checking their test responses. Measurement on an example substance using semi-custom hardware shows promising results (95% classification accuracy) which can be further improved with improved instrumentation.

Zhang, F., Chan, P. P. K., Tang, T. Q..  2015.  L-GEM based robust learning against poisoning attack. 2015 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). :175–178.

Poisoning attack in which an adversary misleads the learning process by manipulating its training set significantly affect the performance of classifiers in security applications. This paper proposed a robust learning method which reduces the influences of attack samples on learning. The sensitivity, defined as the fluctuation of the output with small perturbation of the input, in Localized Generalization Error Model (L-GEM) is measured for each training sample. The classifier's output on attack samples may be sensitive and inaccurate since these samples are different from other untainted samples. An import score is assigned to each sample according to its localized generalization error bound. The classifier is trained using a new training set obtained by resampling the samples according to their importance scores. RBFNN is applied as the classifier in experimental evaluation. The proposed model outperforms than the traditional one under the well-known label flip poisoning attacks including nearest-first and farthest-first flips attack.

Zhang, F., Dong, X., Zhao, X., Wang, Y., Qureshi, S., Zhang, Y., Lou, X., Tang, Y..  2018.  Theoretical Round Modification Fault Analysis on AEGIS-128 with Algebraic Techniques. 2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :335-343.
This paper proposed an advanced round modification fault analysis (RMFA) at the theoretical level on AEGIS-128, which is one of seven finalists in CAESAR competition. First, we clarify our assumptions and simplifications on the attack model, focusing on the encryption security. Then, we emphasize the difficulty of applying vanilla RMFA to AEGIS-128 in the practical case. Finally we demonstrate our advanced fault analysis on AEGIS-128 using machine-solver based algebraic techniques. Our enhancement can be used to conquer the practical scenario which is difficult for vanilla RMFA. Simulation results show that when the fault is injected to the initialization phase and the number of rounds is reduced to one, two samples of injections can extract the whole 128 key bits within less than two hours. This work can also be extended to other versions such as AEGIS-256.
Zhang, F., Deng, Z., He, Z., Lin, X., Sun, L..  2018.  Detection Of Shilling Attack In Collaborative Filtering Recommender System By Pca And Data Complexity. 2018 International Conference on Machine Learning and Cybernetics (ICMLC). 2:673–678.

Collaborative filtering (CF) recommender system has been widely used for its well performing in personalized recommendation, but CF recommender system is vulnerable to shilling attacks in which shilling attack profiles are injected into the system by attackers to affect recommendations. Design robust recommender system and propose attack detection methods are the main research direction to handle shilling attacks, among which unsupervised PCA is particularly effective in experiment, but if we have no information about the number of shilling attack profiles, the unsupervised PCA will be suffered. In this paper, a new unsupervised detection method which combine PCA and data complexity has been proposed to detect shilling attacks. In the proposed method, PCA is used to select suspected attack profiles, and data complexity is used to pick out the authentic profiles from suspected attack profiles. Compared with the traditional PCA, the proposed method could perform well and there is no need to determine the number of shilling attack profiles in advance.

Zhang, L., Shen, X., Zhang, F., Ren, M., Ge, B., Li, B..  2019.  Anomaly Detection for Power Grid Based on Time Series Model. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :188—192.

In the process of informationization and networking of smart grids, the original physical isolation was broken, potential risks increased, and the increasingly serious cyber security situation was faced. Therefore, it is critical to develop accuracy and efficient anomaly detection methods to disclose various threats. However, in the industry, mainstream security devices such as firewalls are not able to detect and resist some advanced behavior attacks. In this paper, we propose a time series anomaly detection model, which is based on the periodic extraction method of discrete Fourier transform, and determines the sequence position of each element in the period by periodic overlapping mapping, thereby accurately describe the timing relationship between each network message. The experiments demonstrate that our model can detect cyber attacks such as man-in-the-middle, malicious injection, and Dos in a highly periodic network.