Visible to the public Biblio

Filters: Author is Zhang, Xin  [Clear All Filters]
Zhang, Xin, Cai, Xiaobo, Wang, Chaogang, Han, Ke, Zhang, Shujuan.  2019.  A Dynamic Security Control Architecture for Industrial Cyber-Physical System. 2019 IEEE International Conference on Industrial Internet (ICII). :148—151.

According to the information security requirements of the industrial control system and the technical features of the existing defense measures, a dynamic security control strategy based on trusted computing is proposed. According to the strategy, the Industrial Cyber-Physical System system information security solution is proposed, and the linkage verification mechanism between the internal fire control wall of the industrial control system, the intrusion detection system and the trusted connection server is provided. The information exchange of multiple network security devices is realized, which improves the comprehensive defense capability of the industrial control system, and because the trusted platform module is based on the hardware encryption, storage, and control protection mode, It overcomes the common problem that the traditional repairing and stitching technique based on pure software leads to easy breakage, and achieves the goal of significantly improving the safety of the industrial control system . At the end of the paper, the system analyzes the implementation of the proposed secure industrial control information security system based on the trustworthy calculation.

Jiang, Qi, Zhang, Xin, Zhang, Ning, Tian, Youliang, Ma, Xindi, Ma, Jianfeng.  2019.  Two-Factor Authentication Protocol Using Physical Unclonable Function for IoV. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :195–200.
As an extension of Internet of Things (IoT) in transportation sector, the Internet of Vehicles (IoV) can greatly facilitate vehicle management and route planning. With ever-increasing penetration of IoV, the security and privacy of driving data should be guaranteed. Moreover, since vehicles are often left unattended with minimum human interventions, the onboard sensors are vulnerable to physical attacks. Therefore, the physically secure authentication and key agreement (AKA) protocol is urgently needed for IoV to implement access control and information protection. In this paper, physical unclonable function (PUF) is introduced in the AKA protocol to ensure that the system is secure even if the user devices or sensors are compromised. Specifically, PUF, as a hardware fingerprint generator, eliminates the storage of any secret information in user devices or vehicle sensors. By combining password with PUF, the user device cannot be used by someone else to be successfully authenticated as the user. By resorting to public key cryptography, the proposed protocol can provide anonymity and desynchronization resilience. Finally, the elaborate security analysis demonstrates that the proposed protocol is free from the influence of known attacks and can achieve expected security properties, and the performance evaluation indicates the efficiency of our protocol.
Zhang, Xin, Si, Xujie, Naik, Mayur.  2017.  Combining the Logical and the Probabilistic in Program Analysis. Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learning and Programming Languages. :27–34.

Conventional program analyses have made great strides by leveraging logical reasoning. However, they cannot handle uncertain knowledge, and they lack the ability to learn and adapt. This in turn hinders the accuracy, scalability, and usability of program analysis tools in practice. We seek to address these limitations by proposing a methodology and framework for incorporating probabilistic reasoning directly into existing program analyses that are based on logical reasoning. We demonstrate that the combined approach can benefit a number of important applications of program analysis and thereby facilitate more widespread adoption of this technology.