Visible to the public Biblio

Filters: Author is Zhao, R.  [Clear All Filters]
Ding, W., Wang, J., Lu, K., Zhao, R., Wang, X., Zhu, Y..  2017.  Optimal Cache Management and Routing for Secure Content Delivery in Information-Centric Networks with Network Coding. 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC). :267–274.

Information-Centric Network (ICN) is one of the most promising network architecture to handle the problem of rapid increase of data traffic because it allows in-network cache. ICNs with Linear Network Coding (LNC) can greatly improve the performance of content caching and delivery. In this paper, we propose a Secure Content Caching and Routing (SCCR) framework based on Software Defined Network (SDN) to find the optimal cache management and routing for secure content delivery, which aims to firstly minimize the total cost of cache and bandwidth consumption and then minimize the usage of random chunks to guarantee information theoretical security (ITS). Specifically, we firstly propose the SCCR problem and then introduce the main ideas of the SCCR framework. Next, we formulate the SCCR problem to two Linear Programming (LP) formulations and design the SCCR algorithm based on them to optimally solve the SCCR problem. Finally, extensive simulations are conducted to evaluate the proposed SCCR framework and algorithms.

Cao, H., Liu, S., Zhao, R., Gu, H., Bao, J., Zhu, L..  2017.  A Privacy Preserving Model for Energy Internet Base on Differential Privacy. 2017 IEEE International Conference on Energy Internet (ICEI). :204–209.

Comparing with the traditional grid, energy internet will collect data widely and connect more broader. The analysis of electrical data use of Non-intrusive Load Monitoring (NILM) can infer user behavior privacy. Consideration both data security and availability is a problem must be addressed. Due to its rigid and provable privacy guarantee, Differential Privacy has proverbially reached and applied to privacy preserving data release and data mining. Because of its high sensitivity, increases the noise directly will led to data unavailable. In this paper, we propose a differentially private mechanism to protect energy internet privacy. Our focus is the aggregated data be released by data owner after added noise in disaggregated data. The theoretically proves and experiments show that our scheme can achieve the purpose of privacy-preserving and data availability.