Visible to the public Biblio

Filters: Author is Shi, Q.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Pan, T., Xu, C., Lv, J., Shi, Q., Li, Q., Jia, C., Huang, T., Lin, X..  2019.  LD-ICN: Towards Latency Deterministic Information-Centric Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :973–980.
Deterministic latency is the key challenge that must be addressed in numerous 5G applications such as AR/VR. However, it is difficult to make customized end-to-end resource reservation across multiple ISPs using IP-based QoS mechanisms. Information-Centric Networking (ICN) provides scalable and efficient content distribution at the Internet scale due to its in-network caching and native multicast capabilities, and the deterministic latency can promisingly be guaranteed by caching the relevant content objects in appropriate locations. Existing proposals formulate the ICN cache placement problem into numerous theoretical models. However, the underlying mechanisms to support such cache coordination are not discussed in detail. Especially, how to efficiently make cache reservation, how to avoid route oscillation when content cache is updated and how to conduct the real-time latency measurement? In this work, we propose Latency Deterministic Information-Centric Networking (LD-ICN). LD-ICN relies on source routing-based latency telemetry and leverages an on-path caching technique to avoid frequent route oscillation while still achieve the optimal cache placement under the SDN architecture. Extensive evaluation shows that under LD-ICN, 90.04% of the content requests are satisfied within the hard latency requirements.
T
Maines, C. L., Zhou, B., Tang, S., Shi, Q..  2017.  Towards a Framework for the Extension and Visualisation of Cyber Security Requirements in Modelling Languages. 2017 10th International Conference on Developments in eSystems Engineering (DeSE). :71–76.
Every so often papers are published presenting a new extension for modelling cyber security requirements in Business Process Model and Notation (BPMN). The frequent production of new extensions by experts belies the need for a richer and more usable representation of security requirements in BPMN processes. In this paper, we present our work considering an analysis of existing extensions and identify the notational issues present within each of them. We discuss how there is yet no single extension which represents a comprehensive range of cyber security concepts. Consequently, there is no adequate solution for accurately specifying cyber security requirements within BPMN. In order to address this, we propose a new framework that can be used to extend, visualise and verify cyber security requirements in not only BPMN, but any other existing modelling language. The framework comprises of the three core roles necessary for the successful development of a security extension. With each of these being further subdivided into the respective components each role must complete.