Visible to the public Biblio

Filters: Author is Vilela, J. P.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Pfister, J., Gomes, M. A. C., Vilela, J. P., Harrison, W. K..  2017.  Quantifying equivocation for finite blocklength wiretap codes. 2017 IEEE International Conference on Communications (ICC). :1–6.

This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze forward error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and give preferred strategies for calculating and/or estimating the equivocation in order of preference. We also make several comparisons of different code families. Our results indicate that there are security advantages to using algebraic codes for applications that require small to medium blocklengths.