Visible to the public Biblio

Filters: Author is Anthony, Li Lianjie  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Suzanna, Sia Xin Yun, Anthony, Li Lianjie.  2017.  Hierarchical Module Classification in Mixed-Initiative Conversational Agent System. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :2535–2538.

Our operational context is a task-oriented dialog system where no single module satisfactorily addresses the range of conversational queries from humans. Such systems must be equipped with a range of technologies to address semantic, factual, task-oriented, open domain conversations using rule-based, semantic-web, traditional machine learning and deep learning. This raises two key challenges. First, the modules need to be managed and selected appropriately. Second, the complexity of troubleshooting on such systems is high. We address these challenges with a mixed-initiative model that controls conversational logic through hierarchical classification. We also developed an interface to increase interpretability for operators and to aggregate module performance.