Visible to the public Biblio

Filters: Author is Liu, W.  [Clear All Filters]
2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2021-02-23
Liu, W., Park, E. K., Krieger, U., Zhu, S. S..  2020.  Smart e-Health Security and Safety Monitoring with Machine Learning Services. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—6.

This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.

2021-02-01
Ye, H., Liu, W., Huang, S..  2020.  Method of Image Style Transfer Based on Edge Detection. 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1:1635–1639.
In order to overcome the problem of edge information loss in the process of neural network processing, a method of neural network style transfer based on edge detection is presented. The edge information of the content image is extracted, and the edge information image is processed in the neural network together with the content image and the style image to constrain the edge information of the content image. Compared with Gatys algorithm and markov random field neural network algorithm, the content image edge structure after image style transfer is successfully retained.
2021-01-20
Wang, H., Yang, J., Wang, X., Li, F., Liu, W., Liang, H..  2020.  Feature Fingerprint Extraction and Abnormity Diagnosis Method of the Vibration on the GIS. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1—4.

Mechanical faults of Gas Insulated Switchgear (GIS) often occurred, which may cause serious losses. Detecting vibration signal was effective for condition monitoring and fault diagnosis of GIS. The vibration characteristic of GIS in service was detected and researched based on a developed testing system in this paper, and feature fingerprint extraction method was proposed to evaluate vibration characteristics and diagnose mechanical defects. Through analyzing the spectrum of the vibration signal, we could see that vibration frequency of operating GIS was about 100Hz under normal condition. By means of the wavelet transformation, the vibration fingerprint was extracted for the diagnosis of mechanical vibration. The mechanical vibration characteristic of GIS including circuit breaker and arrester in service was detected, we could see that the frequency distribution of abnormal vibration signal was wider, it contained a lot of high harmonic components besides the 100Hz component, and the vibration acoustic fingerprint was totally different from the normal ones, that is, by comparing the frequency spectra and vibration fingerprint, the mechanical faults of GIS could be found effectively.

2020-11-30
Zhou, K., Sun, S., Wang, H., Huang, P., He, X., Lan, R., Li, W., Liu, W., Yang, T..  2019.  Improving Cache Performance for Large-Scale Photo Stores via Heuristic Prefetching Scheme. IEEE Transactions on Parallel and Distributed Systems. 30:2033–2045.
Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the reasons behind this phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. The prefetcher proactively prefetches selected photos into cache before they are requested for the first time to eliminate compulsory misses and promote hit ratios. Our extensive evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4 percent, while reducing the average access latency by 6.9 percent at a marginal cost of 4.14 percent backend network traffic compared to the original system that performs no prefetching.
2019-03-15
Xue, M., Bian, R., Wang, J., Liu, W..  2018.  A Co-Training Based Hardware Trojan Detection Technique by Exploiting Unlabeled ICs and Inaccurate Simulation Models. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1452-1457.

Integrated circuits (ICs) are becoming vulnerable to hardware Trojans. Most of existing works require golden chips to provide references for hardware Trojan detection. However, a golden chip is extremely difficult to obtain. In previous work, we have proposed a classification-based golden chips-free hardware Trojan detection technique. However, the algorithm in the previous work are trained by simulated ICs without considering that there may be a shift which occurs between the simulation and the silicon fabrication. It is necessary to learn from actual silicon fabrication in order to obtain an accurate and effective classification model. We propose a co-training based hardware Trojan detection technique exploiting unlabeled fabricated ICs and inaccurate simulation models, to provide reliable detection capability when facing fabricated ICs, while eliminating the need of fabricated golden chips. First, we train two classification algorithms using simulated ICs. During test-time, the two algorithms can identify different patterns in the unlabeled ICs, and thus be able to label some of these ICs for the further training of the another algorithm. Moreover, we use a statistical examination to choose ICs labeling for the another algorithm in order to help prevent a degradation in performance due to the increased noise in the labeled ICs. We also use a statistical technique for combining the hypotheses from the two classification algorithms to obtain the final decision. The theoretical basis of why the co-training method can work is also described. Experiment results on benchmark circuits show that the proposed technique can detect unknown Trojans with high accuracy (92% 97%) and recall (88% 95%).

2018-11-19
Huang, H., Wang, H., Luo, W., Ma, L., Jiang, W., Zhu, X., Li, Z., Liu, W..  2017.  Real-Time Neural Style Transfer for Videos. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). :7044–7052.

Recent research endeavors have shown the potential of using feed-forward convolutional neural networks to accomplish fast style transfer for images. In this work, we take one step further to explore the possibility of exploiting a feed-forward network to perform style transfer for videos and simultaneously maintain temporal consistency among stylized video frames. Our feed-forward network is trained by enforcing the outputs of consecutive frames to be both well stylized and temporally consistent. More specifically, a hybrid loss is proposed to capitalize on the content information of input frames, the style information of a given style image, and the temporal information of consecutive frames. To calculate the temporal loss during the training stage, a novel two-frame synergic training mechanism is proposed. Compared with directly applying an existing image style transfer method to videos, our proposed method employs the trained network to yield temporally consistent stylized videos which are much more visually pleasant. In contrast to the prior video style transfer method which relies on time-consuming optimization on the fly, our method runs in real time while generating competitive visual results.

2018-03-26
Liu, W., Chen, F., Hu, H., Cheng, G., Huo, S., Liang, H..  2017.  A Novel Framework for Zero-Day Attacks Detection and Response with Cyberspace Mimic Defense Architecture. 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :50–53.

In cyberspace, unknown zero-day attacks can bring safety hazards. Traditional defense methods based on signatures are ineffective. Based on the Cyberspace Mimic Defense (CMD) architecture, the paper proposes a framework to detect the attacks and respond to them. Inputs are assigned to all online redundant heterogeneous functionally equivalent modules. Their independent outputs are compared and the outputs in the majority will be the final response. The abnormal outputs can be detected and so can the attack. The damaged executive modules with abnormal outputs will be replaced with new ones from the diverse executive module pool. By analyzing the abnormal outputs, the correspondence between inputs and abnormal outputs can be built and inputs leading to recurrent abnormal outputs will be written into the zero-day attack related database and their reuses cannot work any longer, as the suspicious malicious inputs can be detected and processed. Further responses include IP blacklisting and patching, etc. The framework also uses honeypot like executive module to confuse the attacker. The proposed method can prevent the recurrent attack based on the same exploit.

2018-01-23
Lim, K., Tuladhar, K. M., Wang, X., Liu, W..  2017.  A scalable and secure key distribution scheme for group signature based authentication in VANET. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :478–483.

Security issues in vehicular communication have become a huge concern to safeguard increasing applications. A group signature is one of the popular authentication approaches for VANETs (Vehicular ad hoc networks) which can be implemented to secure the vehicular communication. However, securely distributing group keys to fast-moving vehicular nodes is still a challenging problem. In this paper, we propose an efficient key management protocol for group signature based authentication, where a group is extended to a domain with multiple road side units. Our scheme not only provides a secure way to deliver group keys to vehicular nodes, but also ensures security features. The experiment results show that our key distribution scheme is a scalable, efficient and secure solution to vehicular networking.

2017-04-20
Luo, W., Liu, W., Luo, Y., Ruan, A., Shen, Q., Wu, Z..  2016.  Partial Attestation: Towards Cost-Effective and Privacy-Preserving Remote Attestations. 2016 IEEE Trustcom/BigDataSE/ISPA. :152–159.
In recent years, the rapid development of virtualization and container technology brings unprecedented impact on traditional IT architecture. Trusted Computing devotes to provide a solution to protect the integrity of the target platform and introduces a virtual TPM to adapt to the challenges that virtualization brings. However, the traditional integrity measurement solution and remote attestation has limitations due to the challenges such as large of measurement and attestation cost and overexposure of configurations details. In this paper, we propose the Partial Attestation Model. The basic idea of Partial Attestation Model is to reconstruct the Chain of Trust by dividing them into several separated ones. Our model therefore enables the challenger to attest the specified security requirements of the target platform, instead of acquiring and verifying the complete detailed configurations. By ignoring components not related to the target requirements, our model reduces the attestation costs. In addition, we further implement an attestation protocol to prevent overexposure of the target platform's configuration details. We build a use case to illustrate the implementation of our model, and the evaluations on our prototype show that our model achieves better efficiency than the existing remote attestation scheme.
2017-03-08
Song, D., Liu, W., Ji, R., Meyer, D. A., Smith, J. R..  2015.  Top Rank Supervised Binary Coding for Visual Search. 2015 IEEE International Conference on Computer Vision (ICCV). :1922–1930.

In recent years, binary coding techniques are becoming increasingly popular because of their high efficiency in handling large-scale computer vision applications. It has been demonstrated that supervised binary coding techniques that leverage supervised information can significantly enhance the coding quality, and hence greatly benefit visual search tasks. Typically, a modern binary coding method seeks to learn a group of coding functions which compress data samples into binary codes. However, few methods pursued the coding functions such that the precision at the top of a ranking list according to Hamming distances of the generated binary codes is optimized. In this paper, we propose a novel supervised binary coding approach, namely Top Rank Supervised Binary Coding (Top-RSBC), which explicitly focuses on optimizing the precision of top positions in a Hamming-distance ranking list towards preserving the supervision information. The core idea is to train the disciplined coding functions, by which the mistakes at the top of a Hamming-distance ranking list are penalized more than those at the bottom. To solve such coding functions, we relax the original discrete optimization objective with a continuous surrogate, and derive a stochastic gradient descent to optimize the surrogate objective. To further reduce the training time cost, we also design an online learning algorithm to optimize the surrogate objective more efficiently. Empirical studies based upon three benchmark image datasets demonstrate that the proposed binary coding approach achieves superior image search accuracy over the state-of-the-arts.

2015-05-05
Ming Xiang, Tauch, S., Liu, W..  2014.  Dependability and Resource Optimation Analysis for Smart Grid Communication Networks. Big Data and Cloud Computing (BdCloud), 2014 IEEE Fourth International Conference on. :676-681.

Smart Grid is the trend of next generation power distribution and network management that enable a two -- way interactive communication and operation between consumers and suppliers, so as to achieve intelligent resource management and optimization. The wireless mesh network technology is a promising infrastructure solution to support these smart functionalities, while it has some inherent vulnerabilities and cyber-attack risks to be addressed. As Smart Grid is heavily relying on the underlie communication networks, which makes their security and dependability issues critical to the entire smart grid technology. Several studies have been conducted in the field of Smart Grid security, but few works were focused on the dependability and its associated resource analysis of the control center networks. In this paper, we have investigated the dependability modeling and also resource allocation in redundant communication networks by adopting two mathematical approaches, Reliability Block Diagrams (RBD) and Stochastic Petri Nets (SPNs), to analyze the dependability of control center networks in Smart Grid environment. We have applied our proposed modeling approach in an extensive case study to evaluate the availability of smart gird networks with different redundancy mechanisms. A combination of dependability models and reliability importance are used to analyze the network availability according to the most important components. We also show the variation of network availability in accordance with Mean Time to Failure (MTTF) in different network architectures.