Visible to the public Biblio

Filters: Author is Zhao, Guoliang  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Zhao, Min, Li, Shunxin, Xiao, Dong, Zhao, Guoliang, Li, Bo, Liu, Li, Chen, Xiangyu, Yang, Min.  2019.  Consumption Ability Estimation of Distribution System Interconnected with Microgrids. 2019 IEEE International Conference on Energy Internet (ICEI). :345–350.
With fast development of distributed generation, storages and control techniques, a growing number of microgrids are interconnected with distribution networks. Microgrid capacity that a local distribution system can afford, is important to distribution network planning and microgrids well-organized integration. Therefore, this paper focuses on estimating consumption ability of distribution system interconnected with microgrids. The method to judge rationality of microgrids access plan is put forward, and an index system covering operation security, power quality and energy management is proposed. Consumption ability estimation procedure based on rationality evaluation and interactions is built up then, and requirements on multi-scenario simulation are presented. Case study on a practical distribution system design with multi-microgrids guarantees the validity and reasonableness of the proposed method and process. The results also indicate construction and reinforcement directions for the distribution network.
Gao, Qing, Ma, Sen, Shao, Sihao, Sui, Yulei, Zhao, Guoliang, Ma, Luyao, Ma, Xiao, Duan, Fuyao, Deng, Xiao, Zhang, Shikun et al..  2018.  CoBOT: Static C/C++ Bug Detection in the Presence of Incomplete Code. Proceedings of the 26th Conference on Program Comprehension. :385-388.

To obtain precise and sound results, most of existing static analyzers require whole program analysis with complete source code. However, in reality, the source code of an application always interacts with many third-party libraries, which are often not easily accessible to static analyzers. Worse still, more than 30% of legacy projects [1] cannot be compiled easily due to complicated configuration environments (e.g., third-party libraries, compiler options and macros), making ideal "whole-program analysis" unavailable in practice. This paper presents CoBOT [2], a static analysis tool that can detect bugs in the presence of incomplete code. It analyzes function APIs unavailable in application code by either using function summarization or automatically downloading and analyzing the corresponding library code as inferred from the application code and its configuration files. The experiments show that CoBOT is not only easy to use, but also effective in detecting bugs in real-world programs with incomplete code. Our demonstration video is at: