Visible to the public Biblio

Filters: Author is Yang, Z.  [Clear All Filters]
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
Wu, X., Yang, Z., Ling, C., Xia, X..  2016.  Artificial-Noise-Aided Message Authentication Codes With Information-Theoretic Security. IEEE Transactions on Information Forensics and Security. 11:1278–1290.
In the past, two main approaches for the purpose of authentication, including information-theoretic authentication codes and complexity-theoretic message authentication codes (MACs), were almost independently developed. In this paper, we consider to construct new MACs, which are both computationally secure and information-theoretically secure. Essentially, we propose a new cryptographic primitive, namely, artificial-noise-aided MACs (ANA-MACs), where artificial noise is used to interfere with the complexity-theoretic MACs and quantization is further employed to facilitate packet-based transmission. With a channel coding formulation of key recovery in the MACs, the generation of standard authentication tags can be seen as an encoding process for the ensemble of codes, where the shared key between Alice and Bob is considered as the input and the message is used to specify a code from the ensemble of codes. Then, we show that artificial noise in ANA-MACs can be well employed to resist the key recovery attack even if the opponent has an unlimited computing power. Finally, a pragmatic approach for the analysis of ANA-MACs is provided, and we show how to balance the three performance metrics, including the completeness error, the false acceptance probability, and the conditional equivocation about the key. The analysis can be well applied to a class of ANA-MACs, where MACs with Rijndael cipher are employed.
Yang, Z., Li, X., Wei, L., Zhang, C., Gu, C..  2020.  SGX-ICN: A Secure and Privacy-Preserving Information-Centric Networking with SGX Enclaves. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :142–147.
As the next-generation network architecture, Information-Centric Networking (ICN) has emerged as a novel paradigm to cope with the increasing demand for content delivery on the Internet. In contrast to the conventional host-centric architectures, ICN focuses on content retrieval based on their name rather than their storage location. However, ICN is vulnerable to various security and privacy attacks due to the inherent attributes of the ICN architectures. For example, a curious ICN node can monitor the network traffic to reveal the sensitive data issued by specific users. Hence, further research on privacy protection for ICN is needed. This paper presents a practical approach to effectively enhancing the security and privacy of ICN by utilizing Intel SGX, a commodity trusted execution environment. The main idea is to leverage secure enclaves residing on ICN nodes to do computations on sensitive data. Performance evaluations on the real-world datasets demonstrate the efficiency of the proposed scheme. Moreover, our scheme outperforms the cryptography based method.
Tang, R., Yang, Z., Li, Z., Meng, W., Wang, H., Li, Q., Sun, Y., Pei, D., Wei, T., Xu, Y. et al..  2020.  ZeroWall: Detecting Zero-Day Web Attacks through Encoder-Decoder Recurrent Neural Networks. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2479—2488.

Zero-day Web attacks are arguably the most serious threats to Web security, but are very challenging to detect because they are not seen or known previously and thus cannot be detected by widely-deployed signature-based Web Application Firewalls (WAFs). This paper proposes ZeroWall, an unsupervised approach, which works with an existing WAF in pipeline, to effectively detecting zero-day Web attacks. Using historical Web requests allowed by an existing signature-based WAF, a vast majority of which are assumed to be benign, ZeroWall trains a self-translation machine using an encoder-decoder recurrent neural network to capture the syntax and semantic patterns of benign requests. In real-time detection, a zero-day attack request (which the WAF fails to detect), not understood well by self-translation machine, cannot be translated back to its original request by the machine, thus is declared as an attack. In our evaluation using 8 real-world traces of 1.4 billion Web requests, ZeroWall successfully detects real zero-day attacks missed by existing WAFs and achieves high F1-scores over 0.98, which significantly outperforms all baseline approaches.

Yang, Z..  2019.  Fidelity: Towards Measuring the Trustworthiness of Neural Network Classification. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
With the increasing performance of neural networks on many security-critical tasks, the security concerns of machine learning have become increasingly prominent. Recent studies have shown that neural networks are vulnerable to adversarial examples: carefully crafted inputs with negligible perturbations on legitimate samples could mislead a neural network to produce adversary-selected outputs while humans can still correctly classify them. Therefore, we need an additional measurement on the trustworthiness of the results of a machine learning model, especially in adversarial settings. In this paper, we analyse the root cause of adversarial examples, and propose a new property, namely fidelity, of machine learning models to describe the gap between what a model learns and the ground truth learned by humans. One of its benefits is detecting adversarial attacks. We formally define fidelity, and propose a novel approach to quantify it. We evaluate the quantification of fidelity in adversarial settings on two neural networks. The study shows that involving the fidelity enables a neural network system to detect adversarial examples with true positive rate 97.7%, and false positive rate 1.67% on a studied neural network.
Lin, Y., Qi, Z., Wu, H., Yang, Z., Zhang, J., Wenyin, L..  2018.  CoderChain: A BlockChain Community for Coders. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :246–247.
An online community based on blockchain is proposed for software developers to share, assess, and learn codes and other codes or software related knowledge. It involves three modules or roles, namely: developer (or coder, or more generally, knowledge contributor), code (or knowledge contribution), and jury (or assessor, who is usually a developer with advanced skills), in addition to the blockchain based database. Each full node of the blockchain hosts a copy of all activities of developers in such community, including uploading contributions, assessing others' contributions, and conducting transactions. Smart contracts are applicable to automate transactions after code assessment or other related activities. The system aims to assess and improve the value of codes accurately, stimulate the creativity of the developers, and improve software development efficiency, so as to establish a virtuous cycle of a software development community.