Visible to the public Biblio

Filters: Author is Sokolov, A. N.  [Clear All Filters]
Pyatnisky, I. A., Sokolov, A. N..  2020.  Assessment of the Applicability of Autoencoders in the Problem of Detecting Anomalies in the Work of Industrial Control Systems.. 2020 Global Smart Industry Conference (GloSIC). :234—239.

Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.

Alabugin, S. K., Sokolov, A. N..  2020.  Applying of Generative Adversarial Networks for Anomaly Detection in Industrial Control Systems. 2020 Global Smart Industry Conference (GloSIC). :199–203.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.

Sokolov, A. N., Pyatnitsky, I. A., Alabugin, S. K..  2018.  Research of Classical Machine Learning Methods and Deep Learning Models Effectiveness in Detecting Anomalies of Industrial Control System. 2018 Global Smart Industry Conference (GloSIC). :1-6.

Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These attacks are hard to detect and their consequences can be catastrophic. Cyber attacks can cause anomalies in the work of the ICS and its technological equipment. The presence of mutual interference and noises in this equipment significantly complicates anomaly detection. Moreover, the traditional means of protection, which used in corporate solutions, require updating with each change in the structure of the industrial process. An approach based on the machine learning for anomaly detection was used to overcome these problems. It complements traditional methods and allows one to detect signal correlations and use them for anomaly detection. Additional Tennessee Eastman Process Simulation Data for Anomaly Detection Evaluation dataset was analyzed as example of industrial process. In the course of the research, correlations between the signals of the sensors were detected and preliminary data processing was carried out. Algorithms from the most common techniques of machine learning (decision trees, linear algorithms, support vector machines) and deep learning models (neural networks) were investigated for industrial process anomaly detection task. It's shown that linear algorithms are least demanding on computational resources, but they don't achieve an acceptable result and allow a significant number of errors. Decision tree-based algorithms provided an acceptable accuracy, but the amount of RAM, required for their operations, relates polynomially with the training sample volume. The deep neural networks provided the greatest accuracy, but they require considerable computing power for internal calculations.

Sokolov, A. N., Barinov, A. E., Antyasov, I. S., Skurlaev, S. V., Ufimtcev, M. S., Luzhnov, V. S..  2018.  Hardware-Based Memory Acquisition Procedure for Digital Investigations of Security Incidents in Industrial Control Systems. 2018 Global Smart Industry Conference (GloSIC). :1-7.

The safety of industrial control systems (ICS) depends not only on comprehensive solutions for protecting information, but also on the timing and closure of vulnerabilities in the software of the ICS. The investigation of security incidents in the ICS is often greatly complicated by the fact that malicious software functions only within the computer's volatile memory. Obtaining the contents of the volatile memory of an attacked computer is difficult to perform with a guaranteed reliability, since the data collection procedure must be based on a reliable code (the operating system or applications running in its environment). The paper proposes a new instrumental method for obtaining the contents of volatile memory, general rules for implementing the means of collecting information stored in memory. Unlike software methods, the proposed method has two advantages: firstly, there is no problem in terms of reading the parts of memory, blocked by the operating system, and secondly, the resulting contents are not compromised by such malicious software. The proposed method is relevant for investigating security incidents of ICS and can be used in continuous monitoring systems for the security of ICS.