Visible to the public Biblio

Filters: Author is Srivastava, A. K.  [Clear All Filters]
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
Zhang, Y., Eisele, S., Dubey, A., Laszka, A., Srivastava, A. K..  2019.  Cyber-Physical Simulation Platform for Security Assessment of Transactive Energy Systems. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.