Visible to the public Biblio

Filters: Author is Wang, Chenguang  [Clear All Filters]
2019-11-19
Wang, Chenguang, Cai, Yici, Wang, Haoyi, Zhou, Qiang.  2018.  Electromagnetic Equalizer: An Active Countermeasure Against EM Side-Channel Attack. Proceedings of the International Conference on Computer-Aided Design. :112:1-112:8.

Electromagnetic (EM) analysis is to reveal the secret information by analyzing the EM emission from a cryptographic device. EM analysis (EMA) attack is emerging as a serious threat to hardware security. It has been noted that the on-chip power grid (PG) has a security implication on EMA attack by affecting the fluctuations of supply current. However, there is little study on exploiting this intrinsic property as an active countermeasure against EMA. In this paper, we investigate the effect of PG on EM emission and propose an active countermeasure against EMA, i.e. EM Equalizer (EME). By adjusting the PG impedance, the current waveform can be flattened, equalizing the EM profile. Therefore, the correlation between secret data and EM emission is significantly reduced. As a first attempt to the co-optimization for power and EM security, we extend the EME method by fixing the vulnerability of power analysis. To verify the EME method, several cryptographic designs are implemented. The measurement to disclose (MTD) is improved by 1138x with area and power overheads of 0.62% and 1.36%, respectively.

2021-06-30
Wang, Chenguang, Tindemans, Simon, Pan, Kaikai, Palensky, Peter.  2020.  Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.