Visible to the public Biblio

Filters: Author is Liu, Yi  [Clear All Filters]
Conference Paper
Liu, Yi, Dong, Mianxiong, Ota, Kaoru, Wu, Jun, Li, Jianhua, Chen, Hao.  2019.  SCTD: Smart Reasoning Based Content Threat Defense in Semantics Knowledge Enhanced ICN. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Information-centric networking (ICN) is a novel networking architecture with subscription-based naming mechanism and efficient caching, which has abundant semantic features. However, existing defense studies in ICN fails to isolate or block efficiently novel content threats including malicious penetration and semantic obfuscation for the lack of researches considering ICN semantic features. More importantly, to detect potential threats, existing security works in ICN fail to use semantic reasoning to construct security knowledge-based defense mechanism. Thus ICN needs a smart and content-based defense mechanism. Current works are not able to block content threats implicated in semantics. Additionally, based on traditional computing resources, they are incompatible with ICN protocols. In this paper, we propose smart reasoning based content threat defense for semantics knowledge enhanced ICN. A fog computing based defense mechanism with content semantic awareness is designed to build ICN edge defense system. In addition, smart reasoning algorithms is proposed to detect implicit knowledge and semantic relations in packet names and contents with context communication content and knowledge graph. On top of inference knowledge, the mechanism can perceive threats from ICN interests. Simulations demonstrate the validity and efficiency of the proposed mechanism.
Xing, Han, Zhang, Ke, Yang, Zifan, Sun, Lianying, Liu, Yi.  2018.  Traffic State Estimation with Big Data. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience. :9:1-9:5.

Traffic state estimation helps urban traffic control and management. In this paper, a traffic state estimation model based on the fusion of Hidden Markov model and SEA algorithm is proposed considering the randomness and volatility of traffic systems. Traffic data of average travel speed in selected city were collected, and the mean and fluctuation values of average travel speed in adjacent time windows were calculated. With Hidden Markov model, the system state network is defined according to mean values and fluctuation values. The operation efficiency of traffic system, as well as stability and trend values, were calculated with System Effectiveness Analysis (SEA) algorithm based on system state network. Calculation results show that the method perform well and can be applied to both traffic state assessment of certain road sections and large scale road networks.