Visible to the public Biblio

Filters: Author is Das, R.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Demirol, D., Das, R., Tuna, G..  2017.  An android application to secure text messages. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP). :1–6.

For mobile phone users, short message service (SMS) is the most commonly used text-based communication type on mobile devices. Users can interact with other users and services via SMS. For example, users can send private messages, use information services, apply for a job advertisement, conduct bank transactions, and so on. Users should be very careful when using SMS. During the sending of SMS, the message content should be aware that it can be captured and act accordingly. Based on these findings, the elderly, called as “Silent Generation” which represents 70 years or older adults, are text messaging much more than they did in the past. Therefore, they need solutions which are both simple and secure enough if there is a need to send sensitive information via SMS. In this study, we propose and develop an android application to secure text messages. The application has a simple and easy-to-use graphical user interface but provides significant security.

G
Gunduz, M. Z., Das, R..  2018.  A comparison of cyber-security oriented testbeds for IoT-based smart grids. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

Combining conventional power networks and information communication technologies forms smart grid concept. Researches on the evolution of conventional power grid system into smart grid continue thanks to the development of communication and information technologies hopefully. Testing of smart grid systems is usually performed in simulation environments. However, achieving more effective real-world implementations, a smart grid application needs a real-world test environment, called testbed. Smart grid, which is the combination of conventional electricity line with information communication technologies, is vulnerable to cyber-attacks and this is a key challenge improving the smart grid. The vulnerabilities to cyber-attacks in smart grid arise from information communication technologies' nature inherently. Testbeds, which cyber-security researches and studies can be performed, are needed to find effective solutions against cyber-attacks capabilities in smart grid practices. In this paper, an evaluation of existing smart grid testbeds with the capability of cyber security is presented. First, background, domains, research areas and security issues in smart grid are introduced briefly. Then smart grid testbeds and features are explained. Also, existing security-oriented testbeds and cyber-attack testing capabilities of testbeds are evaluated. Finally, we conclude the study and give some recommendations for security-oriented testbed implementations.

S
Sarma, K.J., Sharma, R., Das, R..  2014.  A survey of Black hole attack detection in Manet. Issues and Challenges in Intelligent Computing Techniques (ICICT), 2014 International Conference on. :202-205.

MANET is an infrastructure less, dynamic, decentralised network. Any node can join the network and leave the network at any point of time. Due to its simplicity and flexibility, it is widely used in military communication, emergency communication, academic purpose and mobile conferencing. In MANET there no infrastructure hence each node acts as a host and router. They are connected to each other by Peer-to-peer network. Decentralised means there is nothing like client and server. Each and every node is acted like a client and a server. Due to the dynamic nature of mobile Ad-HOC network it is more vulnerable to attack. Since any node can join or leave the network without any permission the security issues are more challenging than other type of network. One of the major security problems in ad hoc networks called the black hole problem. It occurs when a malicious node referred as black hole joins the network. The black hole conducts its malicious behavior during the process of route discovery. For any received RREQ, the black hole claims having route and propagates a faked RREP. The source node responds to these faked RREPs and sends its data through the received routes once the data is received by the black hole; it is dropped instead of being sent to the desired destination. This paper discusses some of the techniques put forwarded by researchers to detect and prevent Black hole attack in MANET using AODV protocol and based on their flaws a new methodology also have been proposed.