Visible to the public Biblio

Filters: Author is Phan, Trung V.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Q
Phan, Trung V., Islam, Syed Tasnimul, Nguyen, Tri Gia, Bauschert, Thomas.  2019.  Q-DATA: Enhanced Traffic Flow Monitoring in Software-Defined Networks applying Q-learning. 2019 15th International Conference on Network and Service Management (CNSM). :1–9.
Software-Defined Networking (SDN) introduces a centralized network control and management by separating the data plane from the control plane which facilitates traffic flow monitoring, security analysis and policy formulation. However, it is challenging to choose a proper degree of traffic flow handling granularity while proactively protecting forwarding devices from getting overloaded. In this paper, we propose a novel traffic flow matching control framework called Q-DATA that applies reinforcement learning in order to enhance the traffic flow monitoring performance in SDN based networks and prevent traffic forwarding performance degradation. We first describe and analyse an SDN-based traffic flow matching control system that applies a reinforcement learning approach based on Q-learning algorithm in order to maximize the traffic flow granularity. It also considers the forwarding performance status of the SDN switches derived from a Support Vector Machine based algorithm. Next, we outline the Q-DATA framework that incorporates the optimal traffic flow matching policy derived from the traffic flow matching control system to efficiently provide the most detailed traffic flow information that other mechanisms require. Our novel approach is realized as a REST SDN application and evaluated in an SDN environment. Through comprehensive experiments, the results show that-compared to the default behavior of common SDN controllers and to our previous DATA mechanism-the new Q-DATA framework yields a remarkable improvement in terms of traffic forwarding performance degradation protection of SDN switches while still providing the most detailed traffic flow information on demand.
R
Tuan, Nguyen Ngoc, Hung, Pham Huy, Nghia, Nguyen Danh, Van Tho, Nguyen, Phan, Trung V., Thanh, Nguyen Huu.  2019.  A Robust TCP-SYN Flood Mitigation Scheme Using Machine Learning Based on SDN. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :363–368.

Keeping Internet users safe from attacks and other threats is one of the biggest security challenges nowadays. Distributed Denial of Service (DDoS) [1] is one of the most common attacks. DDoS makes the system stop working by resource overload. Software Define Networking (SDN) [2] has recently emerged as a new networking technology offering an unprecedented programmability that allows network operators to dynamically configure and manage their infrastructures. The flexible processing and centralized management of SDN controller allow flexibly deploying complex security algorithms and mitigation methods. In this paper, we propose a new TCP-SYN flood attack mitigation in SDN networks using machine learning. By using a testbed, we implement the proposed algorithms, evaluate their accuracy and address the trade-off between the accuracy and capacity of the security device. The results show that the algorithms can mitigate TCP-SYN Flood attack over 96.