Visible to the public Biblio

Filters: Author is Huang, Hao  [Clear All Filters]
Conference Paper
Knesek, Kolten, Wlazlo, Patrick, Huang, Hao, Sahu, Abhijeet, Goulart, Ana, Davis, Kate.  2021.  Detecting Attacks on Synchrophasor Protocol Using Machine Learning Algorithms. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :102—107.
Phasor measurement units (PMUs) are used in power grids across North America to measure the amplitude, phase, and frequency of an alternating voltage or current. PMU's use the IEEE C37.118 protocol to send telemetry to phasor data collectors (PDC) and human machine interface (HMI) workstations in a control center. However, the C37.118 protocol utilizes the internet protocol stack without any authentication mechanism. This means that the protocol is vulnerable to false data injection (FDI) and false command injection (FCI). In order to study different scenarios in which C37.118 protocol's integrity and confidentiality can be compromised, we created a testbed that emulates a C37.118 communication network. In this testbed we conduct FCI and FDI attacks on real-time C37.118 data packets using a packet manipulation tool called Scapy. Using this platform, we generated C37.118 FCI and FDI datasets which are processed by multi-label machine learning classifier algorithms, such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Naive Bayes (NB), to find out how effective machine learning can be at detecting such attacks. Our results show that the DT classifier had the best precision and recall rate.
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.  2022.  False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.
Huang, Hao, Kazerooni, Maryam, Hossain-McKenzie, Shamina, Etigowni, Sriharsha, Zonouz, Saman, Davis, Katherine.  2019.  Fast Generation Redispatch Techniques for Automated Remedial Action Schemes. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP). :1–8.
To ensure power system operational security, it not only requires security incident detection, but also automated intrusion response and recovery mechanisms to tolerate failures and maintain the system's functionalities. In this paper, we present a design procedure for remedial action schemes (RAS) that improves the power systems resiliency against accidental failures or malicious endeavors such as cyber attacks. A resilience-oriented optimal power flow is proposed, which optimizes the system security instead of the generation cost. To improve its speed for online application, a fast greedy algorithm is presented to narrow the search space. The proposed techniques are computationally efficient and are suitable for online RAS applications in large-scale power systems. To demonstrate the effectiveness of the proposed methods, there are two case studies with IEEE 24-bus and IEEE 118-bus systems.
Huang, Hao, Davis, C. Matthew, Davis, Katherine R..  2021.  Real-time Power System Simulation with Hardware Devices through DNP3 in Cyber-Physical Testbed. 2021 IEEE Texas Power and Energy Conference (TPEC). :1—6.
Modern power grids are dependent on communication systems for data collection, visualization, and control. Distributed Network Protocol 3 (DNP3) is commonly used in supervisory control and data acquisition (SCADA) systems in power systems to allow control system software and hardware to communicate. To study the dependencies between communication network security, power system data collection, and industrial hardware, it is important to enable communication capabilities with real-time power system simulation. In this paper, we present the integration of new functionality of a power systems dynamic simulation package into our cyber-physical power system testbed that supports real-time power system data transfer using DNP3, demonstrated with an industrial real-time automation controller (RTAC). The usage and configuration of DNP3 with real-world equipment in to achieve power system monitoring and control of a large-scale synthetic electric grid via this DNP3 communication is presented. Then, an exemplar of DNP3 data collection and control is achieved in software and hardware using the 2000-bus Texas synthetic grid.
Sahu, Abhijeet, Huang, Hao, Davis, Katherine, Zonouz, Saman.  2019.  SCORE: A Security-Oriented Cyber-Physical Optimal Response Engine. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.

Automatic optimal response systems are essential for preserving power system resilience and ensuring faster recovery from emergency under cyber compromise. Numerous research works have developed such response engine for cyber and physical system recovery separately. In this paper, we propose a novel cyber-physical decision support system, SCORE, that computes optimal actions considering pure and hybrid cyber-physical states, using Markov Decision Process (MDP). Such an automatic decision making engine can assist power system operators and network administrators to make a faster response to prevent cascading failures and attack escalation respectively. The hybrid nature of the engine makes the reward and state transition model of the MDP unique. Value iteration and policy iteration techniques are used to compute the optimal actions. Tests are performed on three and five substation power systems to recover from attacks that compromise relays to cause transmission line overflow. The paper also analyses the impact of reward and state transition model on computation. Corresponding results verify the efficacy of the proposed engine.