Visible to the public Biblio

Filters: Author is Shurman, Mohammad  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Al-Rushdan, Huthifh, Shurman, Mohammad, Alnabelsi, Sharhabeel H., Althebyan, Qutaibah.  2019.  Zero-Day Attack Detection and Prevention in Software-Defined Networks. 2019 International Arab Conference on Information Technology (ACIT). :278–282.
The zero-day attack in networks exploits an undiscovered vulnerability, in order to affect/damage networks or programs. The term “zero-day” refers to the number of days available to the software or the hardware vendor to issue a patch for this new vulnerability. Currently, the best-known defense mechanism against the zero-day attacks focuses on detection and response, as a prevention effort, which typically fails against unknown or new vulnerabilities. To the best of our knowledge, this attack has not been widely investigated for Software-Defined Networks (SDNs). Therefore, in this work we are motivated to develop anew zero-day attack detection and prevention mechanism, which is designed and implemented for SDN using a modified sandbox tool, named Cuckoo. Our experiments results, under UNIX system, show that our proposed design successfully stops zero-day malwares by isolating the infected client, and thus, prevents these malwares from infesting other clients.
Mheisn, Alaa, Shurman, Mohammad, Al-Ma’aytah, Abdallah.  2020.  WSNB: Wearable Sensors with Neural Networks Located in a Base Station for IoT Environment. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.
The Internet of Things (IoT) is a system paradigm that recently introduced, which includes different smart devices and applications, especially, in smart cities, e.g.; manufacturing, homes, and offices. To improve their awareness capabilities, it is attractive to add more sensors to their framework. In this paper, we propose adding a new sensor as a wearable sensor connected wirelessly with a neural network located on the base station (WSNB). WSNB enables the added sensor to refine their labels through active learning. The new sensors achieve an average accuracy of 93.81%, which is 4.5% higher than the existing method, removing human support and increasing the life cycle for the sensors by using neural network approach in the base station.