Visible to the public Biblio

Filters: Author is Xue, Kaiping  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
He, Peixuan, Xue, Kaiping, Xu, Jie, Xia, Qiudong, Liu, Jianqing, Yue, Hao.  2019.  Attribute-Based Accountable Access Control for Multimedia Content with In-Network Caching. 2019 IEEE International Conference on Multimedia and Expo (ICME). :778–783.
Nowadays, multimedia content retrieval has become the major service requirement of the Internet and the traffic of these contents has dominated the IP traffic. To reduce the duplicated traffic and improve the performance of distributing massive volumes of multimedia contents, in-network caching has been proposed recently. However, because in-network content caching can be directly utilized to respond users' requests, multimedia content retrieval is beyond content providers' control and makes it hard for them to implement access control and service accounting. In this paper, we propose an attribute-based accountable access control scheme for multimedia content distribution while making the best of in-network caching, in which content providers can be fully offline. In our scheme, the attribute-based encryption at multimedia content provider side and access policy based authentication at the edge router side jointly ensure the secure access control, which is also efficient in both space and time. Besides, secure service accounting is implemented by letting edge routers collect service credentials generated during users' request process. Through the informal security analysis, we prove the security of our scheme. Simulation results demonstrate that our scheme is efficient with acceptable overhead.
X
Xue, Kaiping, Zhang, Xiang, Xia, Qiudong, Wei, David S.L., Yue, Hao, Wu, Feng.  2018.  SEAF: A Secure, Efficient and Accountable Access Control Framework for Information Centric Networking. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2213–2221.
Information Centric Networking (ICN) has been regarded as an ideal architecture for the next-generation network to handle users' increasing demand for content delivery with in-network cache. While making better use of network resources and providing better delivery service, an effective access control mechanism is needed due to wide dissemination of contents. However, in the existing solutions, making cache-enabled routers or content providers authenticate users' requests causes high computation overhead and unnecessary delay. Also, straightforward utilization of advanced encryption algorithms increases the opportunities for DoS attacks. Besides, privacy protection and service accountability are rarely taken into account in this scenario. In this paper, we propose a secure, efficient, and accountable access control framework, called SEAF, for ICN, in which authentication is performed at the network edge to block unauthorized requests at the very beginning. We adopt group signature to achieve anonymous authentication, and use hash chain technique to greatly reduce the overhead when users make continuous requests for the same file. Furthermore, the content providers can affirm the service amount received from the network and extract feedback information from the signatures and hash chains. By formal security analysis and the comparison with related works, we show that SEAF achieves the expected security goals and possesses more useful features. The experimental results also demonstrate that our design is efficient for routers and content providers, and introduces only slight delay for users' content retrieval.