Visible to the public Biblio

Filters: Author is Latif, M. Kamran  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Latif, M. Kamran, Jacinto, H S., Daoud, Luka, Rafla, Nader.  2018.  Optimization of a Quantum-Secure Sponge-Based Hash Message Authentication Protocol. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :984—987.

Hash message authentication is a fundamental building block of many networking security protocols such as SSL, TLS, FTP, and even HTTPS. The sponge-based SHA-3 hashing algorithm is the most recently developed hashing function as a result of a NIST competition to find a new hashing standard after SHA-1 and SHA-2 were found to have collisions, and thus were considered broken. We used Xilinx High-Level Synthesis to develop an optimized and pipelined version of the post-quantum-secure SHA-3 hash message authentication code (HMAC) which is capable of computing a HMAC every 280 clock-cycles with an overall throughput of 604 Mbps. We cover the general security of sponge functions in both a classical and quantum computing standpoint for hash functions, and offer a general architecture for HMAC computation when sponge functions are used.