Visible to the public Biblio

Filters: Author is Chen, Bike  [Clear All Filters]
Conference Paper
Yang, Jiannan, Zhang, Fan, Chen, Bike, Khan, Samee U..  2019.  Facial Expression Recognition Based on Facial Action Unit. 2019 Tenth International Green and Sustainable Computing Conference (IGSC). :1—6.

In the past few years, there has been increasing interest in the perception of human expressions and mental states by machines, and Facial Expression Recognition (FER) has attracted increasing attention. Facial Action Unit (AU) is an early proposed method to describe facial muscle movements, which can effectively reflect the changes in people's facial expressions. In this paper, we propose a high-performance facial expression recognition method based on facial action unit, which can run on low-configuration computer and realize video and real-time camera FER. Our method is mainly divided into two parts. In the first part, 68 facial landmarks and image Histograms of Oriented Gradients (HOG) are obtained, and the feature values of action units are calculated accordingly. The second part uses three classification methods to realize the mapping from AUs to FER. We have conducted many experiments on the popular human FER benchmark datasets (CK+ and Oulu CASIA) to demonstrate the effectiveness of our method.