Visible to the public Biblio

Filters: Author is Kannan, S.  [Clear All Filters]
Conference Paper
Kannan, S., Karimi, N., Karri, R., Sinanoglu, O..  2014.  Detection, diagnosis, and repair of faults in memristor-based memories. VLSI Test Symposium (VTS), 2014 IEEE 32nd. :1-6.

Memristors are an attractive option for use in future memory architectures due to their non-volatility, high density and low power operation. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. The typical approach to fault detection and diagnosis in memories entails testing one memory cell at a time. This is time consuming and does not scale for the dense, memristor-based memories. In this paper, we integrate solutions for detecting and locating faults in memristors, and ensure post-silicon recovery from memristor failures. We propose a hybrid diagnosis scheme that exploits sneak-paths inherent in crossbar memories, and uses March testing to test and diagnose multiple memory cells simultaneously, thereby reducing test time. We also provide a repair mechanism that prevents faults in the memory from being activated. The proposed schemes enable and leverage sneak paths during fault detection and diagnosis modes, while still maintaining a sneak-path free crossbar during normal operation. The proposed hybrid scheme reduces fault detection and diagnosis time by ~44%, compared to traditional March tests, and repairs the faulty cell with minimal overhead.

Li, S., Yu, M., Yang, C.-S., Avestimehr, A. S., Kannan, S., Viswanath, P..  2020.  PolyShard: Coded Sharding Achieves Linearly Scaling Efficiency and Security Simultaneously. 2020 IEEE International Symposium on Information Theory (ISIT). :203—208.
Today's blockchain designs suffer from a trilemma claiming that no blockchain system can simultaneously achieve decentralization, security, and performance scalability. For current blockchain systems, as more nodes join the network, the efficiency of the system (computation, communication, and storage) stays constant at best. A leading idea for enabling blockchains to scale efficiency is the notion of sharding: different subsets of nodes handle different portions of the blockchain, thereby reducing the load for each individual node. However, existing sharding proposals achieve efficiency scaling by compromising on trust - corrupting the nodes in a given shard will lead to the permanent loss of the corresponding portion of data. In this paper, we settle the trilemma by demonstrating a new protocol for coded storage and computation in blockchains. In particular, we propose PolyShard: "polynomially coded sharding" scheme that achieves information-theoretic upper bounds on the efficiency of the storage, system throughput, as well as on trust, thus enabling a truly scalable system.