Visible to the public Biblio

Filters: Author is Ni, Ming  [Clear All Filters]
Xu, Yue, Ni, Ming, Ying, Fei, Zhang, Jingwen.  2020.  Security Optimization Based on Mimic Common Operating Environment for the Internet of Vehicles. 2020 2nd International Conference on Computer Communication and the Internet (ICCCI). :18—23.
The increasing vehicles have brought convenience to people as well as many traffic problems. The Internet of Vehicles (IoV) is an extension of the intelligent transportation system based on the Internet of Things (IoT), which is the omnibearing network connection among “Vehicles, Loads, Clouds”. However, IoV also faces threats from various known and unknown security vulnerabilities. Traditional security defense methods can only deal with known attacks, while there is no effective way to deal with unknown attacks. In this paper, we show an IoV system deployed on a Mimic Common Operating Environment (MCOE). At the sensing layer, we introduce a lightweight cryptographic algorithm, LBlock, to encrypt the data collected by the hardware. Thus, we can prevent malicious tampering of information such as vehicle conditions. At the application layer, we firstly put the IoV system platform into MCOE to make it dynamic, heterogeneous and redundant. Extensive experiments prove that the sensing layer can encrypt data reliably and energy-efficiently. And we prove the feasibility and security of the Internet of Vehicles system platform on MCOE.
Ni, Ming, Xue, Yusheng, Tong, Heqin, Li, Manli.  2018.  A cyber physical power system co-simulation platform. 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1—5.

With the tighter integration of power system and Information and Communication Technology (ICT), power grid is becoming a typical cyber physical system (CPS). It is important to analyze the impact of the cyber event on power system, so that it is necessary to build a co-simulation system for studying the interaction between power system and ICT. In this paper, a cyber physical power system (CPPS) co-simulation platform is proposed, which includes the hardware-in-the-loop (HIL) simulation function. By using flexible interface, various simulation software for power system and ICT can be interconnected into the platform to build co-simulation tools for various simulation purposes. To demonstrate it as a proof, one simulation framework for real life cyber-attack on power system control is introduced. In this case, the real life denial-of-service attack on a router in automatic voltage control (AVC) is simulated to demonstrate impact of cyber-attack on power system.