Visible to the public Biblio

Filters: Author is Laurie Williams  [Clear All Filters]
Submitted
Christopher Theisen, Brendan Murphy, Kim Herzig, Laurie Williams.  Submitted.  Risk-Based Attack Surface Approximation: How Much Data is Enough? International Conference on Software Engineering (ICSE) Software Engineering in Practice (SEIP) 2017.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code
base. Making informed decisions on what code to review can improve a team’s ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

2020
Akond Rahman, Effat Farhana, Chris Parnin, Laurie Williams.  2020.  Gang of Eight: A Defect Taxonomy for Infrastructure as Code Scripts. International Conference of Softare Engineering (ICSE).

Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A
taxonomy of IaC defects can be useful for understanding the nature
of defects, and identifying activities needed to fix and prevent
defects in IaC scripts. The goal of this paper is to help practitioners
improve the quality of infrastructure as code (IaC) scripts by developing
a defect taxonomy for IaC scripts through qualitative analysis.
We develop a taxonomy of IaC defects by applying qualitative analysis
on 1,448 defect-related commits collected from open source
software (OSS) repositories of the Openstack organization. We conduct
a survey with 66 practitioners to assess if they agree with the
identified defect categories included in our taxonomy. We quantify
the frequency of identified defect categories by analyzing 80,425
commits collected from 291 OSS repositories spanning across 2005
to 2019.


Our defect taxonomy for IaC consists of eight categories, including
a category specific to IaC called idempotency (i.e., defects that
lead to incorrect system provisioning when the same IaC script is
executed multiple times). We observe the surveyed 66 practitioners
to agree most with idempotency. The most frequent defect category
is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the
defect categories may help in advancing the science of IaC script
quality.

Akond Rahman, Effat Farhana, Laurie Williams.  2020.  The ‘as code’ activities: development anti-patterns for infrastructure as code. Empirical Software Engineering . 25(3467)

Context:

The ‘as code’ suffix in infrastructure as code (IaC) refers to applying software engineering activities, such as version control, to maintain IaC scripts. Without the application of these activities, defects that can have serious consequences may be introduced in IaC scripts. A systematic investigation of the development anti-patterns for IaC scripts can guide practitioners in identifying activities to avoid defects in IaC scripts. Development anti-patterns are recurring development activities that relate with defective IaC scripts.

Goal:

The goal of this paper is to help practitioners improve the quality of infrastructure as code (IaC) scripts by identifying development activities that relate with defective IaC scripts.

Methodology:

We identify development anti-patterns by adopting a mixed-methods approach, where we apply quantitative analysis with 2,138 open source IaC scripts and conduct a survey with 51 practitioners.

Findings:

We observe five development activities to be related with defective IaC scripts from our quantitative analysis. We identify five development anti-patterns namely, ‘boss is not around’, ‘many cooks spoil’, ‘minors are spoiler’, ‘silos’, and ‘unfocused contribution’.

Conclusion:

Our identified development anti-patterns suggest the importance of ‘as code’ activities in IaC because these activities are related to quality of IaC scripts.

2018
Christopher Theisen, Hyunwoo Sohn, Dawson Tripp, Laurie Williams.  2018.  BP: Profiling Vulnerabilities on the Attack Surface. IEEE SecDev.

Security practitioners use the attack surface of software systems to prioritize areas of systems to test and analyze. To date, approaches for predicting which code artifacts are vulnerable have utilized a binary classification of code as vulnerable or not vulnerable. To better understand the strengths and weaknesses of vulnerability prediction approaches, vulnerability datasets with classification and severity data are needed. The goal of this paper is to help researchers and practitioners make security effort prioritization decisions by evaluating which classifications and severities of vulnerabilities are on an attack surface approximated using crash dump stack traces. In this work, we use crash dump stack traces to approximate the attack surface of Mozilla Firefox. We then generate a dataset of 271 vulnerable files in Firefox, classified using the Common Weakness Enumeration (CWE) system. We use these files as an oracle for the evaluation of the attack surface generated using crash data. In the Firefox vulnerability dataset, 14 different classifications of vulnerabilities appeared at least once. In our study, 85.3%
of vulnerable files were on the attack surface generated using crash data. We found no difference between the severity of vulnerabilities found on the attack surface generated using crash data and vulnerabilities not occurring on the attack surface. Additionally, we discuss lessons learned during the development of this vulnerability dataset.

2017
Akond Rahman, Priysha Pradhan, Asif Parthoϕ, Laurie Williams.  2017.  Predicting Android Application Security and Privacy Risk With Static Code Metrics. 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems.

Android applications pose security and privacy risks for end-users. These risks are often quantified by performing dynamic analysis and permission analysis of the Android applications after release. Prediction of security and privacy risks associated with Android applications at early stages of application development, e.g. when the developer (s) are
writing the code of the application, might help Android application developers in releasing applications to end-users that have less security and privacy risk. The goal of this paper
is to aid Android application developers in assessing the security and privacy risk associated with Android applications by using static code metrics as predictors. In our paper, we consider security and privacy risk of Android application as how susceptible the application is to leaking private information of end-users and to releasing vulnerabilities. We investigate how effectively static code metrics that are extracted from the source code of Android applications, can be used to predict security and privacy risk of Android applications. We collected 21 static code metrics of 1,407 Android applications, and use the collected static code metrics to predict security and privacy risk of the applications. As the oracle of security and privacy risk, we used Androrisk, a tool that quantifies the amount of security and privacy risk of an Android application using analysis of Android permissions and dynamic analysis. To accomplish our goal, we used statistical learners such as, radial-based support vector machine (r-SVM). For r-SVM, we observe a precision of 0.83. Findings from our paper suggest that with proper selection of static code metrics, r-SVM can be used effectively to predict security and privacy risk of Android applications