Visible to the public Biblio

Filters: Author is Hong, Junho  [Clear All Filters]
Nuqui, Reynaldo, Hong, Junho, Kondabathini, Anil, Ishchenko, Dmitry, Coats, David.  2018.  A Collaborative Defense for Securing Protective Relay Settings in Electrical Cyber Physical Systems. 2018 Resilience Week (RWS). :49—54.
Modern power systems today are protected and controlled increasingly by embedded systems of computing technologies with a great degree of collaboration enabled by communication. Energy cyber-physical systems such as power systems infrastructures are increasingly vulnerable to cyber-attacks on the protection and control layer. We present a method of securing protective relays from malicious change in protective relay settings via collaboration of devices. Each device checks the proposed setting changes of its neighboring devices for consistency and coordination with its own settings using setting rules based on relay coordination principles. The method is enabled via peer-to-peer communication between IEDs. It is validated in a cyber-physical test bed containing a real time digital simulator and actual relays that communicate via IEC 61850 GOOSE messages. Test results showed improvement in cyber physical security by using domain based rules to block malicious changes in protection settings caused by simulated cyber-attacks. The method promotes the use of defense systems that are aware of the physical systems which they are designed to secure.
Hong, Junho, Nuqui, Reynaldo F., Kondabathini, Anil, Ishchenko, Dmitry, Martin, Aaron.  2019.  Cyber Attack Resilient Distance Protection and Circuit Breaker Control for Digital Substations. IEEE Transactions on Industrial Informatics. 15:4332—4341.
This paper proposes new concepts for detecting and mitigating cyber attacks on substation automation systems by domain-based cyber-physical security solutions. The proposed methods form the basis of a distributed security domain layer that enables protection devices to collaboratively defend against cyber attacks at substations. The methods utilize protection coordination principles to cross check protection setting changes and can run real-time power system analysis to evaluate the impact of the control commands. The transient fault signature (TFS)-based cross-correlation coefficient algorithm has been proposed to detect the false sampled values data injection attack. The proposed functions were verified in a hardware-in-the-loop (HIL) simulation using commercial relays and a real-time digital simulator (RTDS). Various types of cyber intrusions are tested using this test bed to evaluate the consequences and impacts of cyber attacks to power grid as well as to validate the performance of the proposed research-grade cyber attack mitigation functions.