Visible to the public Biblio

Filters: Author is Adam Slagell, University of Illinois at Urbana-Champaign  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Phuong Cao, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2015.  Preemptive Intrusion Detection: Theoretical Framework and Real-World Measurements. Symposium and Bootcamp on the Science of Security, (HotSoS 2015).

This paper presents a Factor Graph based framework called AttackTagger for highly accurate and preemptive detection of attacks, i.e., before the system misuse. We use secu- rity logs on real incidents that occurred over a six-year pe- riod at the National Center for Supercomputing Applica- tions (NCSA) to evaluate AttackTagger. Our data consist of security incidents that led to compromise of the target system, i.e., the attacks in the incidents were only identified after the fact by security analysts. AttackTagger detected 74 percent of attacks, and the majority them were detected before the system misuse. Finally, AttackTagger uncovered six hidden attacks that were not detected by intrusion de- tection systems during the incidents or by security analysts in post-incident forensic analysis.

Phuong Cao, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Surya Bakshi, University of Illinois at Urbana-Champaign, Simon Kim, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Alex Withers, University of Illinois at Urbana-Champaign.  2016.  Preemptive Intrusion Detection – Practical Experience and Detection Framework.

Using stolen or weak credentials to bypass authentication is one of the top 10 network threats, as shown in recent studies. Disguising as legitimate users, attackers use stealthy techniques such as rootkits and covert channels to gain persistent access to a target system. However, such attacks are often detected after the system misuse stage, i.e., the attackers have already executed attack payloads such as: i) stealing secrets, ii) tampering with system services, and ii) disrupting the availability of production services.

In this talk, we analyze a real-world credential stealing attack observed at the National Center for Supercomputing Applications. We show the disadvantages of traditional detection techniques such as signature-based and anomaly-based detection for such attacks. Our approach is a complement to existing detection techniques. We investigate the use of Probabilistic Graphical Model, specifically Factor Graphs, to integrate security logs from multiple sources for a more accurate detection. Finally, we propose a security testbed architecture to: i) simulate variants of known attacks that may happen in the future, ii) replay such attack variants in an isolated environment, and iii) collect and share security logs of such replays for the security research community.

Pesented at the Illinois Information Trust Institute Joint Trust and Security and Science of Security Seminar, May 3, 2016.

H
Hui Lin, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Peter W. Sauer, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign.  2013.  Semantic Security Analysis of SCADA Networks to Detect Malicious Control Commands in Power Grids. First ACM Workshop on Smart Engergy Grid Security.

In the current generation of SCADA (Supervisory Control And Data Acquisition) systems used in power grids, a sophisticated attacker can exploit system vulnerabilities and use a legitimate maliciously crafted command to cause a wide range of system changes that traditional contingency analysis does not consider and remedial action schemes cannot handle. To detect such malicious commands, we propose a semantic analysis framework based on a distributed network of intrusion detection systems (IDSes). The framework combines system knowledge of both cyber and physical infrastructure in power grid to help IDS to estimate execution consequences of control commands, thus to reveal attacker’s malicious intentions. We evaluated the approach on the IEEE 30-bus system. Our experiments demonstrate that: (i) by opening 3 transmission lines, an attacker can avoid detection by the traditional contingency analysis and instantly put the tested 30-bus system into an insecure state and (ii) the semantic analysis provides reliable detection of malicious commands with a small amount of analysis time.

Hui Lin, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Catello Di Marino, University of Illinois at Urbana-Champaugn, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign.  2013.  Adapting Bro into SCADA: Building a Specification-based Instrusion Detection System for the DNP3 Protocol. Eighth Annual Security and Information Intelligence Research Workshop (CSIRRW 2013).

When SCADA systems are exposed to public networks, attackers can more easily penetrate the control systems that operate electrical power grids, water plants, and other critical infrastructures. To detect such attacks, SCADA systems require an intrusion detection technique that can understand the information carried by their usually proprietary network protocols.

To achieve that goal, we propose to attach to SCADA systems a specification-based intrusion detection framework based on Bro [7][8], a runtime network traffic analyzer. We have built a parser in Bro to support DNP3, a network protocol widely used in SCADA systems that operate electrical power grids. This built-in parser provides a clear view of all network events related to SCADA systems. Consequently, security policies to analyze SCADA-specific semantics related to the network events can be accurately defined. As a proof of concept, we specify a protocol validation policy to verify that the semantics of the data extracted from network packets conform to protocol definitions. We performed an experimental evaluation to study the processing capabilities of the proposed intrusion detection framework.

E
Eric Badger, University of Illinois at Urbana-Champaign, Phuong Cao, University of Illinois at Urbana-Champaign, Alex Withers, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2015.  Scalable Data Analytics Pipeline for Real-Time Attack Detection; Design, Validation, and Deployment in a Honey Pot Environment.

This talk will explore a scalable data analytics pipeline for real-time attack detection through the use of customized honeypots at the National Center for Supercomputing Applications (NCSA). Attack detection tools are common and are constantly improving, but validating these tools is challenging. You must: (i) identify data (e.g., system-level events) that is essential for detecting attacks, (ii) extract this data from multiple data logs collected by runtime monitors, and (iii) present the data to the attack detection tools. On top of this, such an approach must scale with an ever-increasing amount of data, while allowing integration of new monitors and attack detection tools. All of these require an infrastructure to host and validate the developed tools before deployment into a production environment.

We will present a generalized architecture that aims for a real-time, scalable, and extensible pipeline that can be deployed in diverse infrastructures to validate arbitrary attack detection tools. To motivate our approach, we will show an example deployment of our pipeline based on open-sourced tools. The example deployment uses as its data sources: (i) a customized honeypot environment at NCSA and (ii) a container-based testbed infrastructure for interactive attack replay. Each of these data sources is equipped with network and host-based monitoring tools such as Bro (a network-based intrusion detection system) and OSSEC (a host-based intrusion detection system) to allow for the runtime collection of data on system/user behavior. Finally, we will present an attack detection tool that we developed and that we look to validate through our pipeline. In conclusion, the talk will discuss the challenges of transitioning attack detection from theory to practice and how the proposed data analytics pipeline can help that transition.

Presented at the Illinois Information Trust Institute Joint Trust and Security/Science of Security Seminar, October 6, 2016.

Presented at the NSA SoS Quarterly Lablet Meeting, October 2015.