Visible to the public Biblio

Filters: Author is Yang, S.  [Clear All Filters]
2020
Drašar, M., Moskal, S., Yang, S., Zat'ko, P..  2020.  Session-level Adversary Intent-Driven Cyberattack Simulator. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1—9.

Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers' actions on the defender's infrastructure, this work focuses on the attackers' strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.

Yang, S., Liu, S., Huang, J., Su, H., Wang, H..  2020.  Control Conflict Suppressing and Stability Improving for an MMC Distributed Control System. IEEE Transactions on Power Electronics. 35:13735–13747.
Compared with traditional centralized control strategies, the distributed control systems significantly improve the flexibility and expandability of an modular multilevel converter (MMC). However, the stability issue in the MMC distributed control system with the presence of control loop coupling interactions is rarely discussed in existing research works. This article is to improve the stability of an MMC distributed control system by inhibiting the control conflict due to the coupling interactions among control loops with incomplete control information. By modeling the MMC distributed control system, the control loop coupling interactions are analyzed and the essential cause of control conflict is revealed. Accordingly, a control parameter design principle is proposed to effectively suppress the disturbances from the targeted control conflict and improve the MMC system stability. The rationality of the theoretical analysis and the effectiveness of the control parameter design principle are confirmed by simulation and experimental results.
2019
Huang, S., Chen, Q., Chen, Z., Chen, L., Liu, J., Yang, S..  2019.  A Test Cases Generation Technique Based on an Adversarial Samples Generation Algorithm for Image Classification Deep Neural Networks. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :520–521.

With widely applied in various fields, deep learning (DL) is becoming the key driving force in industry. Although it has achieved great success in artificial intelligence tasks, similar to traditional software, it has defects that, once it failed, unpredictable accidents and losses would be caused. In this paper, we propose a test cases generation technique based on an adversarial samples generation algorithm for image classification deep neural networks (DNNs), which can generate a large number of good test cases for the testing of DNNs, especially in case that test cases are insufficient. We briefly introduce our method, and implement the framework. We conduct experiments on some classic DNN models and datasets. We further evaluate the test set by using a coverage metric based on states of the DNN.