Visible to the public Biblio

Filters: Author is Dai, J.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Dai, J..  2018.  Situation Awareness-Oriented Cybersecurity Education. 2018 IEEE Frontiers in Education Conference (FIE). :1—8.

This Research to Practice Full Paper presents a new methodology in cybersecurity education. In the context of the cybersecurity profession, the `isolation problem' refers to the observed isolation of different knowledge units, as well as the isolation of technical and business perspectives. Due to limitations in existing cybersecurity education, professionals entering the field are often trapped in microscopic perspectives, and struggle to extend their findings to grasp the big picture in a target network scenario. Guided by a previous developed and published framework named “cross-layer situation knowledge reference model” (SKRM), which delivers comprehensive level big picture situation awareness, our new methodology targets at developing suites of teaching modules to address the above issues. The modules, featuring interactive hands-on labs that emulate real-world multiple-step attacks, will help students form a knowledge network instead of isolated conceptual knowledge units. Students will not just be required to leverage various techniques/tools to analyze breakpoints and complete individual modules; they will be required to connect logically the outputs of these techniques/tools to infer the ground truth and gain big picture awareness of the cyber situation. The modules will be able to be used separately or as a whole in a typical network security course.

Ngambeki, I., Nico, P., Dai, J., Bishop, M..  2018.  Concept Inventories in Cybersecurity Education: An Example from Secure Programming. 2018 IEEE Frontiers in Education Conference (FIE). :1—5.

This Innovative Practice Work in Progress paper makes the case for using concept inventories in cybersecurity education and presents an example of the development of a concept inventory in the field of secure programming. The secure programming concept inventory is being developed by a team of researchers from four universities. We used a Delphi study to define the content area to be covered by the concept inventory. Participants in the Delphi study included ten experts from academia, government, and industry. Based on the results, we constructed a concept map of secure programming concepts. We then compared this concept map to the Joint Task Force on Cybersecurity Education Curriculum 2017 guidelines to ensure complete coverage of secure programming concepts. Our mapping indicates a substantial match between the concept map and those guidelines.