Visible to the public Biblio

Filters: Author is Cheng, N.  [Clear All Filters]
Conference Paper
Yu, C., Quan, W., Cheng, N., Chen, S., Zhang, H..  2019.  Coupled or Uncoupled? Multi-path TCP Congestion Control for High-Speed Railway Networks 2019 IEEE/CIC International Conference on Communications in China (ICCC). :612—617.

With the development of modern High-Speed Railway (HSR) and mobile communication systems, network operators have a strong demand to provide high-quality on-board Internet services for HSR passengers. Multi-path TCP (MPTCP) provides a potential solution to aggregate available network bandwidth, greatly overcoming throughout degradation and severe jitter using single transmission path during the high-speed train moving. However, the choose of MPTCP algorithms, i.e., Coupled or Uncoupled, has a great impact on the performance. In this paper, we investigate this interesting issue in the practical datasets along multiple HSR lines. Particularly, we collect the first-hand network datasets and analyze the characteristics and category of traffic flows. Based on this statistics, we measure and analyze the transmission performance for both mice flows and elephant ones with different MPTCP congestion control algorithms in HSR scenarios. The simulation results show that, by comparing with the coupled MPTCP algorithms, i.e., Fully Coupled and LIA, the uncoupled EWTCP algorithm provides more stable throughput and balances congestion window distribution, more suitable for the HSR scenario for elephant flows. This work provides significant reference for the development of on-board devices in HSR network systems.

Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.