Visible to the public Biblio

Filters: Author is Feigenbaum, Joan  [Clear All Filters]
Feigenbaum, Joan, Jaggard, Aaron D., Wright, Rebecca N..  2014.  Open vs. Closed Systems for Accountability. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :4:1–4:11.

The relationship between accountability and identity in online life presents many interesting questions. Here, we first systematically survey the various (directed) relationships among principals, system identities (nyms) used by principals, and actions carried out by principals using those nyms. We also map these relationships to corresponding accountability-related properties from the literature. Because punishment is fundamental to accountability, we then focus on the relationship between punishment and the strength of the connection between principals and nyms. To study this particular relationship, we formulate a utility-theoretic framework that distinguishes between principals and the identities they may use to commit violations. In doing so, we argue that the analogue applicable to our setting of the well known concept of quasilinear utility is insufficiently rich to capture important properties such as reputation. We propose more general utilities with linear transfer that do seem suitable for this model. In our use of this framework, we define notions of "open" and "closed" systems. This distinction captures the degree to which system participants are required to be bound to their system identities as a condition of participating in the system. This allows us to study the relationship between the strength of identity binding and the accountability properties of a system.

Barman, Ludovic, Zamani, Mahdi, Dacosta, Italo, Feigenbaum, Joan, Ford, Bryan, Hubaux, Jean-Pierre, Wolinsky, David.  2016.  PriFi: A Low-Latency and Tracking-Resistant Protocol for Local-Area Anonymous Communication. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :181–184.

Popular anonymity mechanisms such as Tor provide low communication latency but are vulnerable to traffic analysis attacks that can de-anonymize users. Moreover, known traffic-analysis-resistant techniques such as Dissent are impractical for use in latency-sensitive settings such as wireless networks. In this paper, we propose PriFi, a low-latency protocol for anonymous communication in local area networks that is provably secure against traffic analysis attacks. This allows members of an organization to access the Internet anonymously while they are on-site, via privacy-preserving WiFi networking, or off-site, via privacy-preserving virtual private networking (VPN). PriFi reduces communication latency using a client/relay/server architecture in which a set of servers computes cryptographic material in parallel with the clients to minimize unnecessary communication latency. We also propose a technique for protecting against equivocation attacks, with which a malicious relay might de-anonymize clients. This is achieved without adding extra latency by encrypting client messages based on the history of all messages they have received so far. As a result, any equivocation attempt makes the communication unintelligible, preserving clients' anonymity while holding the servers accountable.