Visible to the public Biblio

Filters: Author is William H. Sanders, University of Illinois at Urbana-Champaign  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
T
Benjamin E. Ujcich, University of Illinois at Urbana-Champaign, Andrew Miller, University of Illinois at Urbana-Champaign, Adam Bates, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Towards an Accountable Software-Defined Networking Architecture. 3rd IEEE Conference on Network Softwarization (NetSoft 2017).

Software-defined networking (SDN) overcomes many limitations of traditional networking architectures because of its programmable and flexible nature. Security applications,for instance, can dynamically reprogram a network to respond to ongoing threats in real time. However, the same flexibility also creates risk, since it can be used against the network. Current SDN architectures potentially allow adversaries to disrupt one or more SDN system components and to hide their actions in doing so. That makes assurance and reasoning about past network
events more difficult, if not impossible. In this paper, we argue that an SDN architecture must incorporate various notions of accountability for achieving systemwide cyber resiliency goals.
We analyze accountability based on a conceptual framework, and we identify how that analysis fits in with the SDN architecture’s entities and processes. We further consider a case study in which accountability is necessary for SDN network applications, and we discuss the limits of current approaches.

R
Ken Keefre, University of Illinolis at Urbana-Champaing, William H. Sanders, University of Illinois at Urbana-Champaign.  2015.  Reliability Analysis with Dynamic Reliability Block Diagrams in the Mobius Modeling Tool. 9th EAI International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2015).

Reliability block diagram (RBD) models are a commonly used reliability analysis method. For static RBD models, combinatorial solution techniques are easy and efficient. However, static RBDs are limited in their ability to express varying system state, dependent events, and non-series-parallel topologies. A recent extension to RBDs, called Dynamic Reliability Block Diagrams (DRBD), has eliminated those limitations. This tool paper details the RBD implementation in the M¨obius modeling framework and provides technical details for using RBDs independently or in composition with other M¨obius modeling formalisms. The paper explains how the graphical front-end provides a user-friendly interface for specifying RBD models. The back-end implementation that interfaces with the M¨obius AFI to define and generate executable models that the M¨obius tool uses to evaluate system metrics is also detailed.

Ken Keefre, University of Illinolis at Urbana-Champaing, William H. Sanders, University of Illinois at Urbana-Champaign.  2015.  Reliability Analysis with Dynamic Reliability Block Diagrams in the Mobius Modeling Tool. 9th EAI International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS 2015).

Reliability block diagram (RBD) models are a commonly used reliability analysis method. For static RBD models, combinatorial solution techniques are easy and efficient. However, static RBDs are limited in their ability to express varying system state, dependent events, and non-series-parallel topologies. A recent extension to RBDs, called Dynamic Reliability Block Diagrams (DRBD), has eliminated those limitations. This tool paper details the RBD implementation in the M¨obius modeling framework and provides technical details for using RBDs independently or in composition with other M¨obius modeling formalisms. The paper explains how the graphical front-end provides a user-friendly interface for specifying RBD models. The back-end implementation that interfaces with the M¨obius AFI to define and generate executable models that the M¨obius tool uses to evaluate system metrics is also detailed.

M
H
D
Carmen Cheh, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Brett Feddersen, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center Singapre, William G. Temple, Advance Digital Science Center Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Developing Models for Physical Attacks in Cyber-Physical Systems Security and Privacy. ACM Workshop on Cyber-Physical Systems Security and Privacy.

In this paper, we analyze the security of cyber-physical systems using the ADversary VIew Security Evaluation (ADVISE) meta modeling approach, taking into consideration the efects of physical attacks. To build our model of the system, we construct an ontology that describes the system components and the relationships among them. The ontology also deines attack steps that represent cyber and physical actions that afect the system entities. We apply the ADVISE meta modeling approach, which admits as input our deined ontology, to a railway system use case to obtain insights regarding the system’s security. The ADVISE Meta tool takes in a system model of a railway station and generates an attack execution graph that shows the actions that adversaries may take to reach their goal. We consider several adversary proiles, ranging from outsiders to insider staf members, and compare their attack paths in terms of targeted assets, time to achieve the goal, and probability of detection. The generated results show that even adversaries with access to noncritical assets can afect system service by intelligently crafting their attacks to trigger a physical sequence of efects. We also identify the physical devices and user actions that require more in-depth monitoring to reinforce the system’s security.

Uttam Thakore, University of Illinois at Urbana-Champaign, Ahmed Fawaz, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2018.  Detecting Monitor Compromise using Evidential Reasoning.

Stealthy attackers often disable or tamper with system monitors to hide their tracks and evade detection. In this poster, we present a data-driven technique to detect such monitor compromise using evidential reasoning. Leveraging the fact that hiding from multiple, redundant monitors is difficult for an attacker, to identify potential monitor compromise, we combine alerts from different sets of monitors by using Dempster-Shafer theory, and compare the results to find outliers. We describe our ongoing work in this area.

Carmen Cheh, University of Illinois at Urbana-Champaign, Binbin Chen, Advanced Digital Sciences Center, Singapore, William G. Temple, A, Advanced Digital Sciences Center, Singapore, William H. Sanders, University of Illinois at Urbana-Champaign.  2017.  Data-Driven Model-Based Detection of Malicious Insiders via Physical Access Logs. 14th International Conference on Quantitative Evaluation of Systems (QEST 2017).

The risk posed by insider threats has usually been approached by analyzing the behavior of users solely in the cyber domain. In this paper, we show the viability of using physical movement logs, collected via a building access control system, together with an understanding of the layout of the building housing the system’s assets, to detect malicious insider behavior that manifests itself in the physical domain. In particular, we propose a systematic framework that uses contextual knowledge about the system and its users, learned from historical data gathered from a building access control system, to select suitable models for representing movement behavior. We then explore the online usage of the learned models, together with knowledge about the layout of the building being monitored, to detect malicious insider behavior. Finally, we show the effectiveness of the developed framework using real-life data traces of user movement in railway transit stations.

C
Benjamin E. Ujcich, University of Illinois at Urbana-Champaign, Samuel Jero, MIT Lincoln Laboratory, Anne Edmundson, Princeton University, Qi Wang, University of Illinois at Urbana-Champaign, Richard Skowyra, MIT Lincoln Laboratory, James Landry, MIT Lincoln Laboratory, Adam Bates, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign, Cristina Nita-Rotaru, Northeastern University, Hamed Okhravi, MIT Lincoln Laboratroy.  2018.  Cross-App Poisoning in Software-Defined Networking. 2018 ACM Conference on Computer and Communications Security.

Software-defined networking (SDN) continues to grow in popularity because of its programmable and extensible control plane realized through network applications (apps). However, apps introduce significant security challenges that can systemically disrupt network operations, since apps must access or modify data in a shared control plane state. If our understanding of how such data propagate within the control plane is inadequate, apps can co-opt other apps, causing them to poison the control plane’s integrity. 

We present a class of SDN control plane integrity attacks that we call cross-app poisoning (CAP), in which an unprivileged app manipulates the shared control plane state to trick a privileged app into taking actions on its behalf. We demonstrate how role-based access control (RBAC) schemes are insufficient for preventing such attacks because they neither track information flow nor enforce information flow control (IFC). We also present a defense, ProvSDN, that uses data provenance to track information flow and serves as an online reference monitor to prevent CAP attacks. We implement ProvSDN on the ONOS SDN controller and demonstrate that information flow can be tracked with low-latency overheads.

A
Mohammad Noureddine, University of Illinois at Urbana-Champaign, Masooda Bashir, University of Illinois at Urbana-Champaign, Ken Keefe, University of Illinois at Urbana-Champaign, Andrew Marturano, University of Illinois at Urbana-Champaign, William H. Sanders, University of Illinois at Urbana-Champaign.  2015.  Accounting for User Behavior in Predictive Cyber Security Models.

The human factor is often regarded as the weakest link in cybersecurity systems. The investigation of several security breaches reveals an important impact of human errors in exhibiting security vulnerabilities. Although security researchers have long observed the impact of human behavior, few improvements have been made in designing secure systems that are resilient to the uncertainties of the human element.

In this talk, we discuss several psychological theories that attempt to understand and influence the human behavior in the cyber world. Our goal is to use such theories in order to build predictive cyber security models that include the behavior of typical users, as well as system administrators. We then illustrate the importance of our approach by presenting a case study that incorporates models of human users. We analyze our preliminary results and discuss their challenges and our approaches to address them in the future.

Presented at the ITI Joint Trust and Security/Science of Security Seminar, October 20, 2016.